

EcoStruxure™ Control Expert

Safety

Block Library

Original instructions

QGH60275.10

06/2024

Legal Information

The information provided in this document contains general descriptions, technical characteristics and/or recommendations related to products/solutions.

This document is not intended as a substitute for a detailed study or operational and site-specific development or schematic plan. It is not to be used for determining suitability or reliability of the products/solutions for specific user applications. It is the duty of any such user to perform or have any professional expert of its choice (integrator, specifier or the like) perform the appropriate and comprehensive risk analysis, evaluation and testing of the products/solutions with respect to the relevant specific application or use thereof.

The Schneider Electric brand and any trademarks of Schneider Electric SE and its subsidiaries referred to in this document are the property of Schneider Electric SE or its subsidiaries. All other brands may be trademarks of their respective owner.

This document and its content are protected under applicable copyright laws and provided for informative use only. No part of this document may be reproduced or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), for any purpose, without the prior written permission of Schneider Electric.

Schneider Electric does not grant any right or license for commercial use of the document or its content, except for a non-exclusive and personal license to consult it on an "as is" basis.

Schneider Electric reserves the right to make changes or updates with respect to or in the content of this document or the format thereof, at any time without notice.

To the extent permitted by applicable law, no responsibility or liability is assumed by Schneider Electric and its subsidiaries for any errors or omissions in the informational content of this document, as well as any non-intended use or misuse of the content thereof.

Table of Contents

Safety Information	9
About the Book	11
General information	17
Block Types and Their Applications	18
Block Types	19
FFB Structure	20
EN and ENO	22
Communication	24
S_RD_ETH_MX: Safe Mx80 PAC-PAC Ethernet Communication Function	25
Description	26
S_WR_ETH_MX: Safe Mx80 PAC-PAC Ethernet Communication Function	32
Description	33
S_RD_ETH_MX2: Safe Mx80 PAC-PAC Ethernet Communication Function	37
Description	38
S_WR_ETH_MX2: Safe Mx80 PAC-PAC Ethernet Communication Function	44
Description	45
Comparison	49
S_EQ_***: Equal To	50
Description	50
S_GE_***: Greater Than or Equal To	53
Description	53
S_GT_***: Greater Than	56
Description	56
S_LE_***: Less Than or Equal To	59
Description	59
S_LT_***: Less Than	62
Description	62
S_NE_***: Not Equal To	65
Description	65
Actuator	68
S_EDM: Actuator Error Detection Monitoring	69
Description	69

S_ENABLE_SWITCH: Three Position Enable Switch.....	79
Description.....	79
S_ESPE: Electro-Sensitive Protective Equipment.....	87
Description.....	87
S_GUARD_LOCKING: Guard Lock Control	95
Description.....	95
S_GUARD_MONITORING: Guard Lock Monitoring	103
Description.....	103
S_MODE_SELECTOR: Safety Mode Switch	113
Description.....	113
S_OUTCONTROL: Output Driver	121
Description.....	121
Sensor	129
S_AI_COMP: Analog Input Compare	130
Description.....	130
S_ANTIVALENT: Compare Antivalent Inputs	137
Description.....	137
S_EMERGENCYSTOP: Emergency Stop Monitor	144
Description.....	144
S_EQUIVALENT: Compare Equivalent Inputs.....	152
Description.....	152
S_MUTING_PAR: Parallel Muting.....	158
Description.....	158
S_MUTING_SEQ: Sequential Muting	172
Description.....	172
S_TWO_HAND_CONTROL_TYPE_II: Two Hand Control	182
Description.....	182
S_TWO_HAND_CONTROL_TYPE_III: Two Hand Control with Timer	189
Description.....	189
High Availability.....	197
S_AIHA: High Availability for Mx80 Safety Analog Inputs.....	198
Description.....	198
S_DIHA: High Availability for Mx80 Safety Digital Inputs.....	202
Description.....	202
Logic	207

S_AND_***: AND Function.....	208
Description.....	208
S_F_TRIG: Falling Edge Detection.....	210
Description.....	210
S_NOT_***: Negation	212
Description.....	212
S_OR_***: OR Function.....	214
Description.....	214
S_R_TRIG: Rising Edge Detection	216
Description.....	216
S_ROL_***: Rotate Left	218
Description.....	218
S_ROR_***: Rotate Right.....	221
Description.....	221
S_RS: Bistable Function Block, Reset Dominant	224
Description.....	224
S_SHL_***: Shift Left.....	226
Description.....	226
S_SHR_***: Shift Right	229
Description.....	229
S_SR: Bistable Function Block, Set Dominant	232
Description.....	232
S_XOR_***: Exclusive OR Function.....	234
Description.....	234
Mathematics	236
S_ABS_***: Absolute Value Computation	237
Description.....	237
S_ADD_***: Addition	240
Description.....	240
S_DIV_***: Division	243
Description.....	243
S_MUL_***: Multiplication	246
Description.....	246
S_MOVE: Assignment.....	249
Description.....	249

S_NEG_***: Negation	251
Description.....	251
S_SQRT_REAL: Safety Square Root	254
Description.....	254
S_SIGN_***: Sign Evaluation	256
Description.....	256
S_SUB_***: Subtraction.....	259
Description.....	259
Statistical.....	262
S_LIMIT_***: Limit.....	263
Description.....	263
S_MAX_***: Maximum Value Function	266
Description.....	266
S_MIN_***: Minimum Value Function	269
Description.....	269
S_MUX_***: Multiplexer.....	272
Description.....	272
S_SEL: Binary Selection.....	275
Description.....	275
System	277
S_SYST_CLOCK_MX: System Clock.....	278
Description.....	278
S_SYST_READ_TASK_BIT_MX: System Task Bit.....	281
Description.....	281
S_SYST_RESET_TASK_BIT_MX: Reset Task.....	283
Description.....	283
S_SYST_STAT_MX: System State	285
Description.....	285
S_SYST_TIME_MX: System Time	287
Description.....	287
Timers & Counters.....	289
S_CTD_***: Down Counter	290
Description.....	290
S_CU_***: Up Counter.....	293
Description.....	293

S_CTUD_***: Up/Down Counter.....	296
Description.....	296
S_TOF: Off Delay.....	299
Description.....	299
S_TON: On Delay	302
Description.....	302
S_TP: Pulse.....	305
Description.....	305
Type to Type.....	308
S_BIT_TO_BYTE: Type Conversion	309
Description.....	309
S_BIT_TO_WORD: Type Conversion	312
Description.....	312
S_BOOL_TO_***: Type Conversion.....	315
Description.....	315
S_BYTE_TO_BIT: Type Conversion	317
Description.....	317
S_BYTE_TO_***: Type Conversion	320
Description.....	320
S_DWORD_TO_***: Type Conversion	322
Description.....	322
S_INT_TO_***: Type Conversion.....	325
Description.....	325
S_DINT_TO_***: Type Conversion	328
Description.....	328
S_REAL_TO_***: Type Conversion	331
Description.....	331
S_TIME_TO_UDINT: Type Conversion	334
Description.....	334
S_UDINT_TO_***: Type Conversion	336
Description.....	336
S_UINT_TO_***: Type Conversion	339
Description.....	339
S_WORD_TO_BIT: Type Conversion	342
Description.....	342

S_WORD_TO_***: Type Conversion	345
Description.....	345
Appendices.....	347
System Objects.....	348
M580 Safety System Bits	349
M580 Safety System Words	351
SRAC References.....	354
Glossary	355
Index.....	361

Safety Information

Important Information

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, service, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a “Danger” or “Warning” safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

DANGER

DANGER indicates a hazardous situation which, if not avoided, **will result in** death or serious injury.

WARNING

WARNING indicates a hazardous situation which, if not avoided, **could result in** death or serious injury.

CAUTION

CAUTION indicates a hazardous situation which, if not avoided, **could result in** minor or moderate injury.

NOTICE

NOTICE is used to address practices not related to physical injury.

Please Note

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.

About the Book

Document Scope

This document describes the functions and function blocks of the Safety library.

Validity Note

This document is valid for EcoStruxure™ Control Expert 16.0 or later.

Related Documents

Title of documentation	Reference number
<i>M580 Safety, Safety Related Application Conditions — Verification Plan</i>	EIO0000004540 (ENG) EIO0000004741 (FRE) EIO0000004742 (GER) EIO0000004744 (ITA) EIO0000004743 (SPA) EIO0000004745 (CHS)
<i>Modicon M580, Safety Manual</i>	QGH46982 (English), QGH46983 (French), QGH46984 (German), QGH46985 (Italian), QGH46986 (Spanish), QGH46987 (Chinese)
<i>Modicon M580, Safety System Planning Guide</i>	QGH60283 (English), QGH60284 (French), QGH60285 (German), QGH60286 (Spanish), QGH60287 (Italian), QGH60288 (Chinese)
<i>Modicon Controllers Platform Cyber Security, Reference Manual</i>	EIO0000001999 (English), EIO0000002001 (French), EIO0000002000 (German), EIO0000002002 (Italian), EIO0000002003 (Spanish), EIO0000002004 (Chinese)
<i>Modicon M580, Hardware, Reference Manual</i>	EIO0000001578 (English), EIO0000001579 (French), EIO0000001580 (German), EIO0000001582 (Italian), EIO0000001581 (Spanish), EIO0000001583 (Chinese)
<i>Modicon M580 Standalone System Planning Guide for Frequently Used Architectures</i>	HRB62666 (English), HRB65318 (French), HRB65319 (German), HRB65320 (Italian), HRB65321 (Spanish), HRB65322 (Chinese)
<i>Modicon M580 System Planning Guide for Complex Topologies</i>	NHA58892 (English), NHA58893 (French), NHA58894 (German), NHA58895 (Italian), NHA58896 (Spanish), NHA58897 (Chinese)

Title of documentation	Reference number
<i>Unity Loader, User Guide</i>	33003805 (English), 33003806 (French), 33003807 (German), 33003809 (Italian), 33003808 (Spanish), 33003810 (Chinese)
<i>EcoStruxure™ Control Expert, Operating Modes</i>	33003101 (English), 33003102 (French), 33003103 (German), 33003104 (Spanish), 33003696 (Italian), 33003697 (Chinese)
<i>EcoStruxure™ Control Expert, System Bits and Words, Reference Manual</i>	EIO0000002135 (English), EIO0000002136 (French), EIO0000002137 (German), EIO0000002138 (Italian), EIO0000002139 (Spanish), EIO0000002140 (Chinese)

To find documents online, visit the Schneider Electric download center (www.se.com/ww/en/download/).

You can download these technical publications and other technical information from our website at www.se.com/ww/en/download/ .

Product Related Information

DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Disconnect power from all equipment including connected devices prior to removing any covers or doors, or installing or removing any accessories, hardware, cables, or wires except under the specific conditions specified in the appropriate hardware guide for this equipment.
- Always use a properly rated voltage sensing device to confirm the power is off where and when indicated,
- Replace and secure all covers, accessories, hardware, cables, and wires and confirm that a proper ground connection exists before applying power to the unit.
- Use only the specified voltage when operating this equipment and any associated products.

Failure to follow these instructions will result in death or serious injury.

⚠ WARNING

LOSS OF CONTROL

- Perform a Failure Mode and Effects Analysis (FMEA), or equivalent risk analysis, of your application, and apply preventive and detective controls before implementation.
- Provide a fallback state for undesired control events or sequences.
- Provide separate or redundant control paths wherever required.
- Supply appropriate parameters, particularly for limits.
- Review the implications of transmission delays and take actions to mitigate them.
- Review the implications of communication link interruptions and take actions to mitigate them.
- Provide independent paths for control functions (for example, emergency stop, over-limit conditions, and error conditions) according to your risk assessment, and applicable codes and regulations.
- Apply local accident prevention and safety regulations and guidelines.¹
- Test each implementation of a system for proper operation before placing it into service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

¹ For additional information, refer to NEMA ICS 1.1 (latest edition), *Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control* and to NEMA ICS 7.1 (latest edition), *Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems* or their equivalent governing your particular location.

⚠ WARNING

UNINTENDED EQUIPMENT OPERATION

- Only use software approved by Schneider Electric for use with this equipment.
- Update your application program every time you change the physical hardware configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Trademarks

QR Code is a registered trademark of DENSO WAVE INCORPORATED in Japan and other countries.

Terminology Derived from Standards

The technical terms, terminology, symbols, and the corresponding descriptions in the information contained herein, or that appear in or on the products themselves, are generally derived from the terms or definitions of international standards. In the area of functional safety systems, drives, and general automation, this may include, but is not limited to, terms such as *safety*, *safety function*, *safe state*, *fault*, *fault reset*, *malfunction*, *failure*, *error*, *error message*, *dangerous*, etc.

Among others, these standards include:

Standard	Description
IEC 61131-2:2007	Programmable controllers, part 2: Equipment requirements and tests.
EN 61496-1:2013	Safety of machinery: Electro-sensitive protective equipment. Part 1: General requirements and tests.
ISO 12100:2010	Safety of machinery - General principles for design - Risk assessment and risk reduction
EN 60204-1:2006	Safety of machinery - Electrical equipment of machines - Part 1: General requirements
ISO 14119:2013	Safety of machinery - Interlocking devices associated with guards - Principles for design and selection
ISO 13850:2015	Safety of machinery - Emergency stop - Principles for design
IEC 62061:2021	Safety of machinery - Functional safety of safety-related electrical, electronic, and electronic programmable control systems
IEC 61508-1:2010	Functional safety of electrical/electronic/programmable electronic safety-related systems: General requirements.
IEC 61508-2:2010	Functional safety of electrical/electronic/programmable electronic safety-related systems: Requirements for electrical/electronic/programmable electronic safety-related systems.
IEC 61508-3:2010	Functional safety of electrical/electronic/programmable electronic safety-related systems: Software requirements.
IEC 61784-3:2021	Industrial communication networks - Profiles - Part 3: Functional safety fieldbuses - General rules and profile definitions.

2006/42/EC	Machinery Directive
2014/30/EU	Electromagnetic Compatibility Directive
2014/35/EU	Low Voltage Directive

In addition, terms used in the information contained herein may tangentially be used as they are derived from other standards such as:

Standard	Description
IEC 60034 series	Rotating electrical machines
IEC 61800 series	Adjustable speed electrical power drive systems
IEC 61158 series	Digital data communications for measurement and control – Fieldbus for use in industrial control systems

Finally, the term *zone of operation* may be used in conjunction with the description of specific hazards, and is defined as it is for a hazard zone or danger zone in the Machinery Directive (2006/42/EC) and ISO 12100:2010.

NOTE: The aforementioned standards may or may not apply to the specific products cited in the present documentation. For more information concerning the individual standards applicable to the products described herein, see the characteristics tables for those product references.

Information on Non-inclusive or Insensitive Terminology

As a responsible, inclusive company, Schneider Electric is constantly updating its communications and products that contain non-inclusive or insensitive terminology. However, despite these efforts, our content may still contain terms that are deemed inappropriate by some customers.

General information

What's in This Part

Block Types and Their Applications	18
--	----

Overview

This section contains general information about the Safety library.

Block Types and Their Applications

What's in This Chapter

Block Types.....	19
FFB Structure.....	20
EN and ENO.....	22

Overview

This chapter describes the different block types and their applications.

Block Types

Block Types

Different block types are used in Control Expert. The general term for all block types is FFB.

There are the following types of block:

- Elementary Function (EF)
- Elementary Function Block (EFB)

Elementary Function

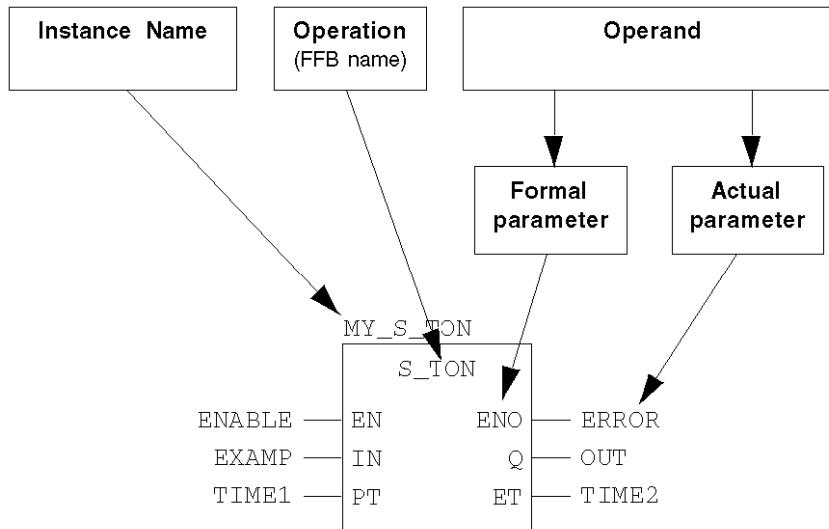
Elementary functions (EF) have no internal status. If the input values are the same, the value at the output is the same for all executions of the function, e.g. the addition of two values gives the same result at every execution.

An elementary function is represented in the graphical languages (FBD and LD) as a block frame with inputs and an output. The inputs are always represented on the left and the outputs always on the right of the frame. The name of the function, i.e. the function type, is shown in the center of the frame.

The number of inputs can be increased with some elementary functions.

Elementary Function Block

Elementary function blocks (EFB) have an internal status. If the inputs have the same values, the value on the output can have another value during the individual executions. For example, with a counter, the value on the output is incremented.


An elementary function block is represented in the graphical languages (FBD and LD) as a block frame with inputs and outputs. The inputs are always represented on the left and the outputs always on the right of the frame. The name of the function block, i.e. the function block type, is shown in the center of the frame. The instance name is displayed above the frame.

FFB Structure

Structure

Each FFB is made up of an operation (name of the FFB), the operands required for the operation (formal and actual parameters) and an instance name for elementary/derived function blocks.

Call of a function block in the FBD programming language:

Operation

The operation determines which function is to be executed with the FFB, e.g. shift register, conversion operations.

Operand

The operand specifies what the operation is to be executed with. With FFBs, this consists of formal and actual parameters.

Formal/Actual Parameters

Inputs and outputs are required to transfer values to or from an FFB. These are called formal parameters.

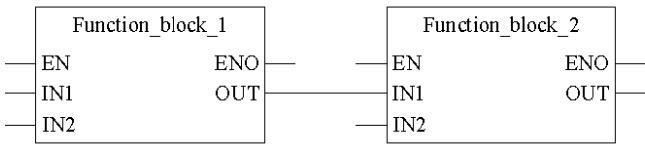
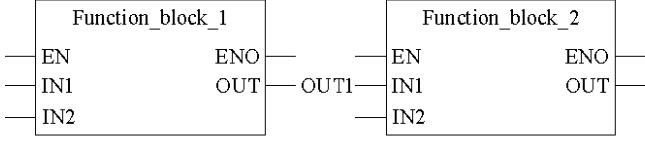
Objects are linked to formal parameters; these objects contain the current process states. They are called actual parameters.

At program runtime, the values from the process are transferred to the FFB via the actual parameters and then output again after processing.

As a general rule, assign the same data type to the actual parameters that is used for the input/output (formal parameters). The only exceptions to this rule are generic inputs/outputs whose data type is determined by the actual parameter. If all actual parameters consist of literals, a suitable data type is selected for the function block.

EN and ENO

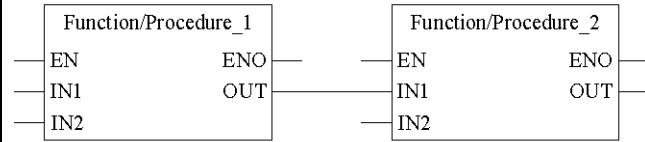
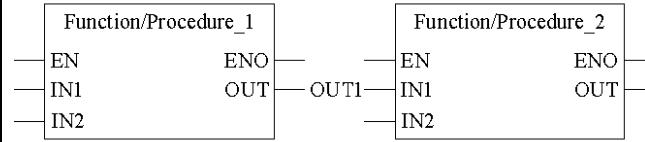
Description



An **EN** input and an **ENO** output can be configured for all FFBs.

If the value of EN is ...	then ...
0 when the FFB is called up,	the algorithms defined by the FFB are not executed and ENO is set to 0.
1 when the FFB is called up,	<p>the algorithms defined by the FFB are executed. After the algorithms have been executed successfully, the value of ENO is set to 1.</p> <p>Note: If an error is detected when executing these algorithms, ENO is set to 0.</p>

Examples

The following tables describe examples if **ENO** is set to 0 (caused by **EN=0** or a detected error during execution).



Function blocks

Example	Description
<p>EN/ENO handling with function blocks that have 1 link as an output parameter:</p> <pre> graph LR FB1[Function_block_1] -- EN --> FB1[Function_block_1] FB1[Function_block_1] -- IN1 --> FB1[Function_block_1] FB1[Function_block_1] -- IN2 --> FB1[Function_block_1] FB1[Function_block_1] -- OUT --> FB2[Function_block_2] FB2[Function_block_2] -- EN --> FB2[Function_block_2] FB2[Function_block_2] -- IN1 --> FB2[Function_block_2] FB2[Function_block_2] -- IN2 --> FB2[Function_block_2] FB2[Function_block_2] -- OUT --> OUT[] FB1[Function_block_1] --- FB2[Function_block_2] </pre>	<p>If EN from FunctionBlock_1 is set to 0, the output connection OUT from FunctionBlock_1 retains the status it had in the last correctly executed cycle.</p>
<p>EN/ENO handling with function blocks that have 1 variable and 1 link as output parameters:</p> <pre> graph LR FB1[Function_block_1] -- EN --> FB1[Function_block_1] FB1[Function_block_1] -- IN1 --> FB1[Function_block_1] FB1[Function_block_1] -- IN2 --> FB1[Function_block_1] FB1[Function_block_1] -- OUT --> OUT[] FB2[Function_block_2] -- EN --> FB2[Function_block_2] FB2[Function_block_2] -- IN1 --> FB2[Function_block_2] FB2[Function_block_2] -- IN2 --> FB2[Function_block_2] FB2[Function_block_2] -- OUT --> OUT[] FB2[Function_block_2] -- OUT1 --> OUT[] FB1[Function_block_1] --- FB2[Function_block_2] </pre>	<p>If EN from FunctionBlock_1 is set to 0</p> <ul style="list-style-type: none"> the output connection OUT from FunctionBlock_1 retains the status it had in the last correctly executed cycle; the variable OUT1 on the same pin, either retains its previous status or can be changed externally without influencing the connection; the variable and the link are saved independently of each other.

Functions/Procedures

As defined in IEC61131-3, the outputs from deactivated functions (EN-input set to 0) is undefined. The same applies to procedures.

Here is an explanation of the output statuses in this case:

Example	Description
<p>EN/ENO handling with function/procedure blocks that (only) have 1 link as an output parameter:</p> <pre> graph LR F1[Function/Procedure_1] -- EN --> F2[Function/Procedure_2] F1 -- IN1 --> F2 F1 -- IN2 --> F2 F1 -- OUT --> F2 </pre>	<p>If EN from Function/Procedure_1 is set to 0, the output connection OUT from Function/Procedure_1 is also set to 0.</p>
<p>EN/ENO handling with function/procedure blocks that have 1 variable and 1 link as output parameters:</p> <pre> graph LR F1[Function/Procedure_1] -- EN --> F2[Function/Procedure_2] F1 -- IN1 --> F2 F1 -- IN2 --> F2 F1 -- OUT --> F2 F1 -- OUT --> F2 F2 -- OUT1 --> F2 </pre>	<p>If EN from Function/Procedure_1 is set to 0</p> <ul style="list-style-type: none"> the output connection OUT from Function/Procedure_1 is also set to 0; the variable OUT1 on the same pin retains its previous value. <p>Note: In this way it is possible for the variable and the link to have different values.</p>

The output behavior of the FFBs does not depend on whether the FFBs are called up without EN/ENO or with EN=1.

Conditional/Unconditional FFB Call

Unconditional or conditional calls are possible with each FFB. The condition is realized by pre-linking the input EN.

- When EN is connected, then the FFB will be processed when EN = 1.
- When EN is shown or hidden and marked TRUE, or shown and not occupied, then the FFB is processed.

Communication

What's in This Part

S_RD_ETH_MX: Safe Mx80 PAC-PAC Ethernet Communication Function	25
S_WR_ETH_MX: Safe Mx80 PAC-PAC Ethernet Communication Function	32
S_RD_ETH_MX2: Safe Mx80 PAC-PAC Ethernet Communication Function	37
S_WR_ETH_MX2: Safe Mx80 PAC-PAC Ethernet Communication Function	44

Introduction

This section describes the derived function blocks of the **Communication family**.

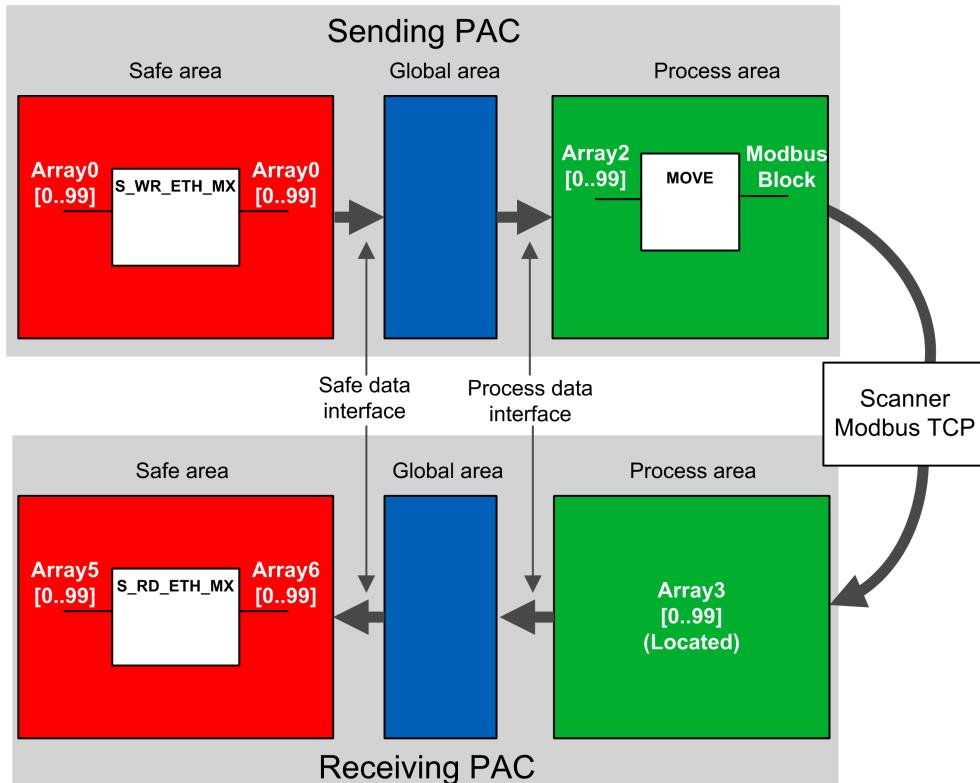
The transfer of safety data between Safety CPUs is firmware dependent:

- For CPU with firmware 3.10 or earlier, use **S_RD_ETH_MX** and **S_WR_ETH_MX** function blocks together.
- For CPU with firmware 3.20 or later, use **S_RD_ETH_MX2** and **S_WR_ETH_MX2** function blocks together.

S_RD_ETH_MX: Safe Mx80 PAC-PAC Ethernet Communication Function

What's in This Chapter

Description	26
-------------------	----


Introduction

This chapter describes the S_RD_ETH_MX block.

Description

Function Description

Use the `S_RD_ETH_MX` function block together with the `S_WR_ETH_MX` function block to complete a transfer of safety data between safety CPUs with firmware 3.10 or earlier. Each safety CPU is designed to insulate safety data from process data by passing data through a global area that is accessible to both the safety and process areas. In this way, process functions do not directly impact safety data.

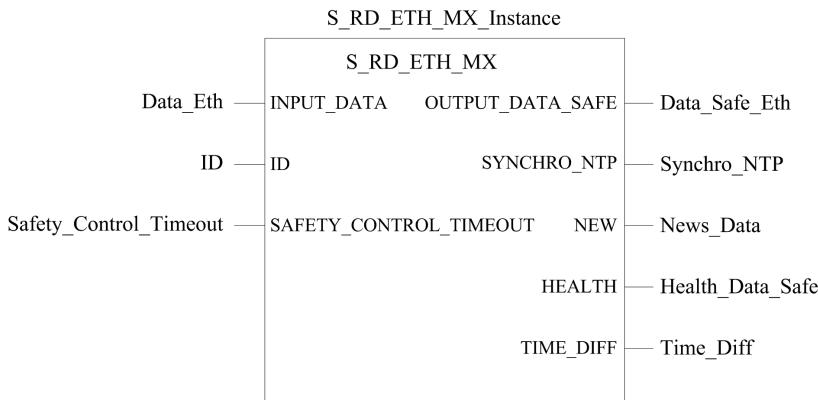
The `S_RD_ETH_MX` function block is used by a receiver PAC to copy the data received in the process area to the safety area and validate the accuracy of the received data.

`EN` and `ENO` can be configured as additional parameters.

The `S_RD_ETH_MX` function block:

- Copies the data received in the `INPUT_DATA` register to the `OUTPUT_DATA_SAFE` register if it passes the following tests:
 - The function block checks the CRC of the last data packet received, via explicit messaging over Modbus TCP. If the CRC is not correct, the data is considered as unsafe and it is not written to the `OUTPUT_DATA_SAFE` register in the safety area.
 - The function block checks the last data received to determine if it is more recent than the data already written in the `OUTPUT_DATA_SAFE` register in the safety area (by comparing time stamps). If the last data received is not more recent, it is not copied to the `OUTPUT_DATA_SAFE` register in the safety area.
- Checks the age of the data in the safety area. If the age is higher than a configurable maximum value set in the `SAFETY_CONTROL_TIMEOUT` input register, the data is declared unsafe and the `HEALTH` bit is set to 0.

NOTE: The data age is the time difference between the time when the data is computed in the sender PAC and the time when the data is checked in the receiver PAC. The time base reference is periodically updated with the time received from an NTP server.


If the `HEALTH` bit is set to 0, the data available in the `OUTPUT_DATA_SAFE` array is considered as unsafe. In this case, take appropriate reactive steps.

Design your application so that the `S_RD_ETH_MX` DFB function block is called at each cycle in the receiver PLC SAFE task and executes before the data usage in the SAFE task cycle.

NOTE: For additional information, refer to chapter *Peer to Peer Communications* (see Modicon M580, Safety Manual).

Representation in FBD

Representation:

Input Parameters

Description of the input parameters:

Parameter	Data Type	Meaning
INPUT_DATA	ARRAY[0..99] of INT	<p>Array of data variables received in the global memory area via explicit messaging over Modbus TCP. Composed of "User safety data" (from index 0 to 90) and "Reserved data" (from index 91 to 99).</p> <p>NOTE: Define these data variables as shared input variables, each with an equivalent global variable, using the Safety Data Interface tab in Control Expert.</p>
ID	INT	<p>Communication identifier. The unique ID value used to calculate the CRC. It is set to the same value as the value used by the sender.</p> <p>NOTE: Assign a unique value to the ID parameter that identifies the safe peer-to-peer communication between a sender and a receiver.</p>
SAFETY_CONTROL_TIMEOUT	UINT	<p>Time out value (in ms). Used to check the age of the data in the safety area and determine if that data is to be considered safe.</p> <p>Refer to the topic Calculating a SAFETY_CONTROL_TIMEOUT Value, below.</p>

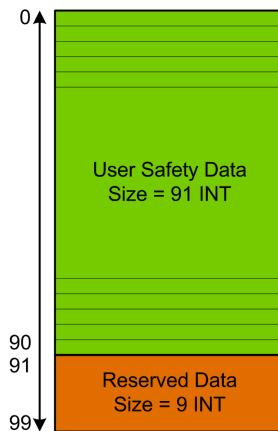
Output Parameters

Description of the output parameters:

Parameter	Data Type	Meaning
OUTPUT_DATA_SAFE	ARRAY[0..99] of INT	Safety data variables array structure. Composed of "User safety data" (from index 0 to 90) and "Reserved data" (from index 91 to 99).
SYNCHRO_NTP	BOOL	<ul style="list-style-type: none"> 1: Indicates that NTP time synchronization is healthy. 0: Indicates NTP time synchronization is not healthy.
NEW	BOOL	<ul style="list-style-type: none"> 1: Indicates that a new set of data has been refreshed in OUTPUT_DATA_SAFE during the current cycle. 0: Indicates no new safe data has been refreshed.

Parameter	Data Type	Meaning
HEALTH	BOOL	<ul style="list-style-type: none">• 1: Indicates the data in the User Safety Data area is safe.• 0: Indicates the data in the User Safety Data area is not safe.
TIME_DIFF	INT	Returns the age (in ms) of the data received and written in the OUTPUT_DATA_SAFE output parameter. Set to -1 if the internal NTP time is not initialized or if no correct data has yet been received.

INPUT_DATA and OUTPUT_DATA_SAFE Arrays Description


The **INPUT_DATA** arrays consist of data coming from the process data memory area. The **OUTPUT_DATA_SAFE** arrays consist of safety variables. Use the **Safety Data Interface** and the **Process Data Interface** tabs in Control Expert to make the link between the process variables and the safety variables.

INPUT_DATA and **OUTPUT_DATA_SAFE** arrays are composed of 2 zones:

- The **User Safety Data** zone contains user data. This zone starts at index 0 and finishes at index 90.
- The **Reserved Data** zone is reserved for auto-generated diagnostic data, including a CRC and time-stamp. This data is used by the receiving PAC to determine if the data contained in the **User Safety Data** zone is safe or not. This zone starts at index 91 and finishes at index 99.

NOTE: Writing in the **Reserved Data** zone is not recommended, as doing so will overwrite the auto-generated diagnostic data.

INPUT_DATA and OUTPUT_DATA_SAFE arrays (array[0..99] of INT) structure representation:

Calculating a SAFETY_CONTROL_TIMEOUT Value

When calculating a SAFETY_CONTROL_TIMEOUT value, consider the following:

- Minimum value: SAFETY_CONTROL_TIMEOUT > T1
- Recommended value: SAFETY_CONTROL_TIMEOUT > 2 * T1

$T1 = CPU_{sender} \text{ MAST cycle time} + CPU_{sender} \text{ SAFE cycle time} + \text{Repetitive_rate} + \text{Network transmission time} + CPU_{receiver} \text{ MAST cycle time} + CPU_{receiver} \text{ SAFE cycle time}$

Where:

- $CPU_{sender} \text{ MAST cycle time}$ is the MAST cycle time of the sender PAC.
- $CPU_{sender} \text{ SAFE cycle time}$ is the SAFE cycle time of the sender PAC.
- Repetitive_rate is the time rate for the I/O scanner write query from the sender PAC to the receiver PAC.
- $\text{Network transmission time}$ is the time consumed on the Ethernet network for the data transmission from the sender PAC to the receiver PAC.
- $CPU_{receiver} \text{ MAST cycle time}$ is the MAST cycle time of the receiver PAC.
- $CPU_{receiver} \text{ SAFE cycle time}$ is the SAFE cycle time of the receiver PAC.

Note that the value defined for the SAFETY_CONTROL_TIMEOUT parameter has a direct effect on the robustness and availability of the safe peer-to-peer communication. If the SAFETY_CONTROL_TIMEOUT parameter value greatly exceeds T1, the communication will be tolerant to various delays (for example network delays) or corrupted data transmissions.

You are responsible for configuring your Ethernet network so the load that does not cause an excessive delay on the network during data transmission, which could lead to the expiration of the timeout. To help safeguard your safe peer-to-peer communications from any excessive delays due to other non-safety data transmitted on the same network, consider using a dedicated Ethernet network for the safe peer-to-peer protocol.

When commissioning your project, you have to estimate the safe peer-to-peer communication performance by checking the values provided in the output parameter `TIME_DIFF` and evaluating the margin using the value defined in the `SAFETY_CONTROL_TIMEOUT` parameter.

Understanding the `HEALTH` Bit

When the `HEALTH` bit value equals:

- 1: The integrity of the data is correct (CRC) and the age of the data is less than the value set in the `SAFTETY_CONTROL_TIMEOUT` input register.

NOTE: The age of the data considered is the time between:

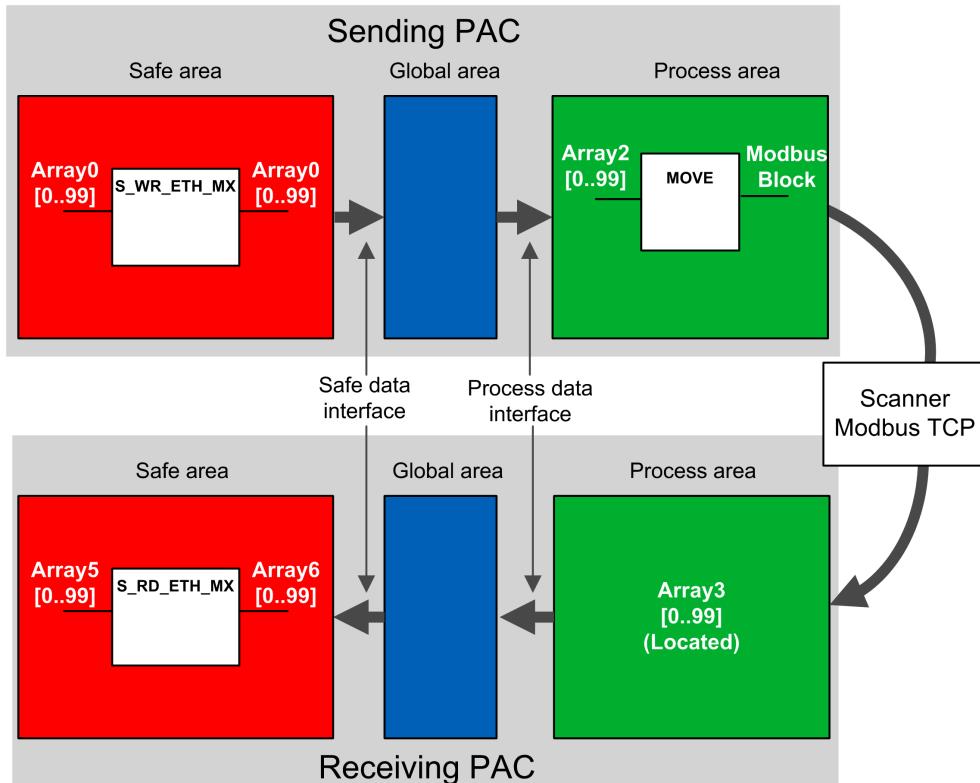
- The beginning of the cycle where the data are computed in the sender PAC.
- The beginning of the cycle where the data are checked in the receiver PAC.
- 0: New valid data are not received in the required time interval (the timer expires and the `HEALTH` bit is set to 0).

NOTE: If the `HEALTH` bit is set to 0, the data in the output array `OUTPUT_DATA_SAFE` is considered to be unsafe; respond accordingly.

S_WR_ETH_MX: Safe Mx80 PAC-PAC Ethernet Communication Function

What's in This Chapter

Description	33
-------------------	----


Introduction

This chapter describes the S_WR_ETH_MX block.

Description

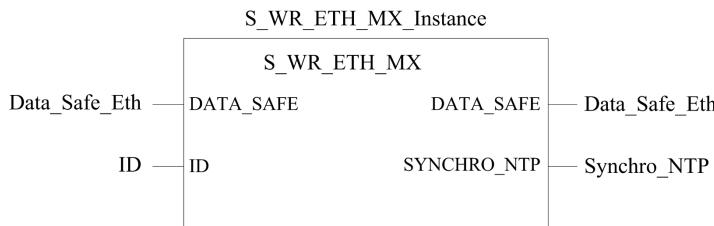
Function Description

Use the `S_WR_ETH_MX` function block together with the `S_RD_ETH_MX` function block to complete a transfer of safety data between safety CPUs with firmware 3.10 or earlier. Each safety CPU is designed to insulate safety data from process data by passing data through a global area that is accessible to both the safety and process areas. In this way process functions do not directly impact safety data.

`EN` and `ENO` can be configured as additional parameters.

The `S_WR_ETH_MX` function block is used by a sender PAC to:

- Calculate the CRC of the safety data to be sent.
- Calculate the time stamp to be sent with the data. The time stamp is based on a time base reference that is periodically updated with the time received from an NTP server.


- Generate a unique message identifier that is added to the CRC to help prevent masquerade and insertion attacks on the transmission of safety data array.
- Insert the calculated CRC and time stamp at the end of the data array to be sent.

The S_WR_ETH_MX function block has to be called as part of each cycle in the sender PAC. Within the cycle logic, it has to be executed after all required modifications have been performed on the data to be sent. The data to be sent may not be modified by after the execution of the S_WR_ETH_MX function block, otherwise the CRC information appended to the transmitted data will not be correct and the safe peer-to-peer communication will not succeed.

NOTE: For additional information, refer to chapter *Peer to Peer Communications* (see Modicon M580, Safety Manual).

Representation in FBD

Representation

Input/Output Parameter

Description of the input/output parameter:

Parameter	Data Type	Meaning
DATA_SAFE	ARRAY [0..99] of INT	<p>Array of safety data variables. Composed of “User safety data” (from index 0 to 90) and “Reserved data” (from index 91 to 99).</p> <p>NOTE: Define these data variables as shared output variables, each with an equivalent global variable, using the Safety Data Interface tab in Control Expert.</p>

Input Parameter

Description of the input parameter:

Parameter	Data Type	Meaning
ID	INT	<p>Communication identifier. The ID value is used to calculate the CRC. It is unique and has the same value as the value used by the sender.</p> <p>NOTE: Assign a unique value to the ID parameter that identifies the safe peer-to-peer communication between a sender and a receiver.</p>

Output Parameter

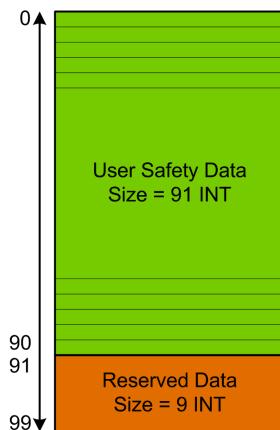
Description of output parameter:

Parameter	Data Type	Meaning
SYNCHRO_NTP	BOOL	<ul style="list-style-type: none">• 1: Indicates that NTP time synchronization is healthy.• 0: Indicates NTP time synchronization is not healthy.

DATA_SAFE Array Description

Use the **Interface** tabs in both the **Safety Data Editor** and the **Process Data Editor** in Control Expert to make the link between the process variables and the safety variables.

Linking process and safety variables in this manner makes it possible to:


- Transfer the value of safety variables to process variables, via linked global variables.
- Send variable values from the process area of the sending PAC to the process area of the receiving PAC, via explicit messaging over Modbus TCP.

DATA_SAFE array is composed of two zones:

- The **User Safety Data** zone contains the data from the safe area of the PAC. This zone starts at index 0 and finishes at index 90.
- The **Reserved Data** zone is reserved for auto-generated diagnostic data, including a CRC and time-stamp. This data is used by the receiving PAC to determine if the data contained in the **User Safety Data** zone is safe or not. This zone starts at index 91 and finishes at index 99.

NOTE: Do not write in the **Reserved Data** zone.

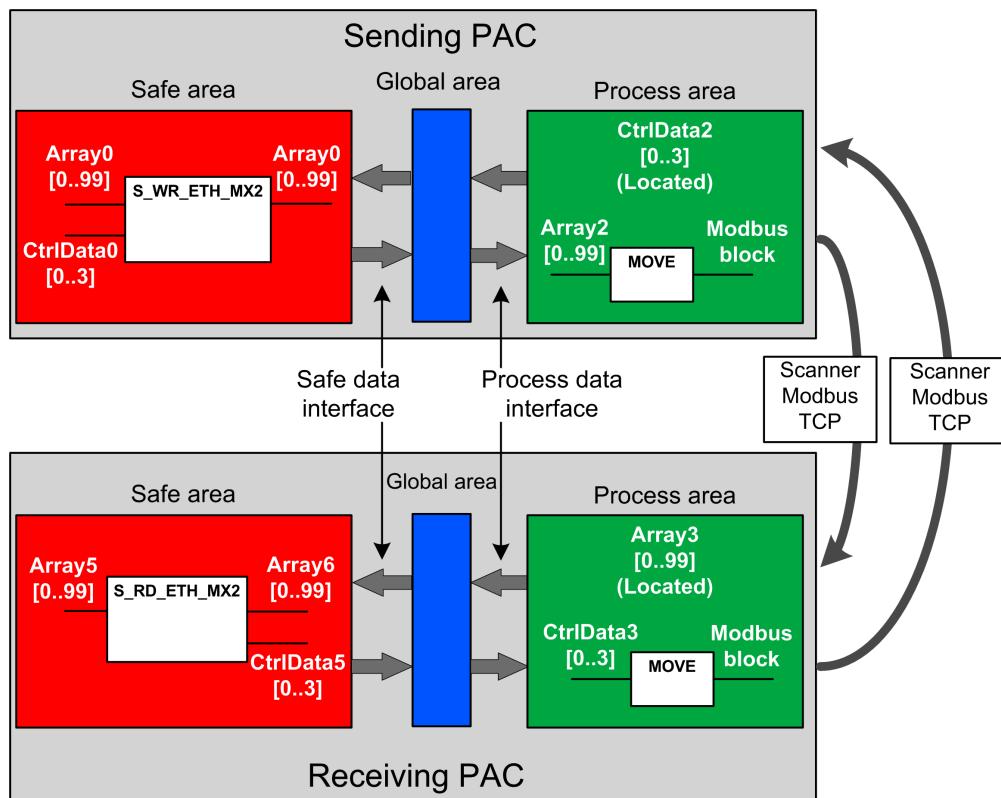
DATA_SAFE array (array[0..99] of INT) structure representation:

S_RD_ETH_MX2: Safe Mx80 PAC-PAC Ethernet Communication Function

What's in This Chapter

Description	38
-------------------	----

Introduction


This chapter describes the S_RD_ETH_MX2 block.

Description

Function Description

Use the `S_RD_ETH_MX2` function block together with the `S_WR_ETH_MX2` function block to complete a transfer of safety data between safety CPUs with firmware 3.20 or later. Each safety CPU is designed to insulate safety data from process data by passing data through a global area that is accessible to both the safety and process areas. In this way, process functions do not directly impact safety data.

NOTE: When configuring safe communications between M580 Safety CPUs and Quantum Safety CPUs, use the `S_RD_ETH_MX`, page 26 and `S_WR_ETH_MX`, page 33 function blocks, instead of the `S_RD_ETH_MX2` and `S_WR_ETH_MX2` function blocks.

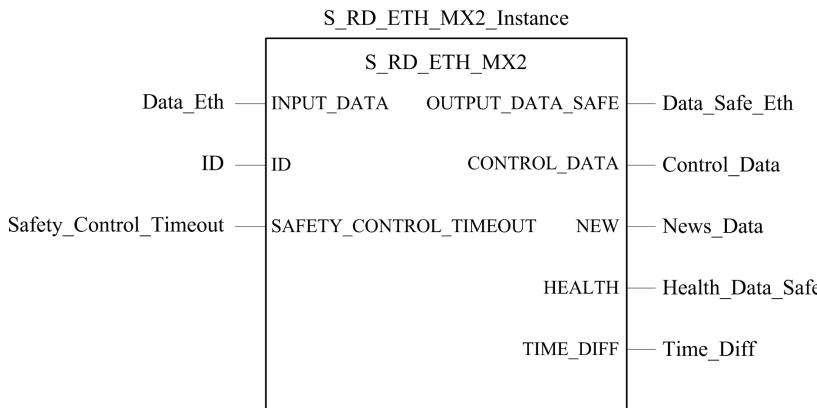
The `S_RD_ETH_MX2` function block is used by a receiver PAC to copy the data received in the process area to the safety area and validate the accuracy of the received data.

`EN` and `ENO` can be configured as additional parameters.

The S_RD_ETH_MX2 function block:

- Copies the data received in the INPUT_DATA register to the OUTPUT_DATA_SAFE register if it passes the following tests:
 - The function block checks the CRC of the last data packet received, via explicit messaging over Modbus TCP. If the CRC is not correct, the data is considered as unsafe and it is not written to the OUTPUT_DATA_SAFE register in the safety area.
 - The function block checks the last data received to determine if it is more recent than the data already written in the OUTPUT_DATA_SAFE register in the safety area (by comparing time stamps). If the last data received is not more recent, it is not copied to the OUTPUT_DATA_SAFE register in the safety area.
- Checks the age of the data in the safety area. If the age is higher than a configurable maximum value set in the SAFETY_CONTROL_TIMEOUT input register, the data is declared unsafe and the HEALTH bit is set to 0.

NOTE: The data age is the time difference between the time when the data is computed in the sender PAC and the time when the data is checked in the receiver PAC. The time base reference is periodically updated with the monotonic time received from the operating system.


If the HEALTH bit is set to 0, the data available in the OUTPUT_DATA_SAFE array is considered as unsafe. In this case, take appropriate reactive steps.

Design your application so that the S_RD_ETH_MX2 DFB function block is called at each cycle in the receiver PLC SAFE task and executes before the data usage in the SAFE task cycle.

NOTE: For additional information, refer to chapter *Peer to Peer Communications* (see Modicon M580, Safety Manual).

Representation in FBD

Representation:

Input Parameters

Description of the input parameters:

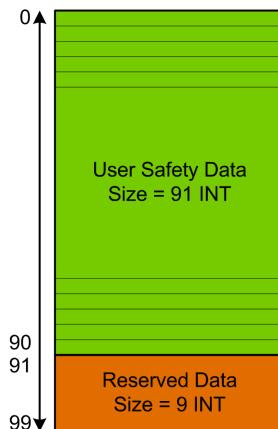
Parameter	Data Type	Meaning
INPUT_DATA	ARRAY[0..99] of INT	<p>Array of data variables received in the global memory area via explicit messaging over Modbus TCP. Composed of “User safety data” (from index 0 to 90) and “Reserved data” (from index 91 to 99).</p> <p>NOTE: Define these data variables as shared input variables, each with an equivalent global variable, using the Safety Data Interface tab in Control Expert.</p>
ID	INT	<p>Communication identifier. The unique ID value used to calculate the CRC. It is set to the same value as the value used by the sender.</p> <p>NOTE: Assign a unique value to the ID parameter that identifies the safe peer-to-peer communication between a sender and a receiver.</p>
SAFETY_CONTROL_TIMEOUT	UINT	<p>Time out value (in ms). Used to check the age of the data in the safety area and determine if that data is to be considered safe.</p> <p>Refer to the topic Calculating a SAFETY_CONTROL_TIMEOUT Value, below.</p>

Output Parameters

Description of the output parameters:

Parameter	Data Type	Meaning
OUTPUT_DATA_SAFE	ARRAY[0..99] of INT	Safety data variables array structure. Composed of "User safety data" (from index 0 to 90) and "Reserved data" (from index 91 to 99).
CONTROL_DATA	ARRAY[0..3] of INT	Contains ID and time stamp based on system monotonic time to send to correspondent sender (S_WR_ETH_MX2 DFB)
NEW	BOOL	<ul style="list-style-type: none">1: Indicates that a new set of data has been refreshed in OUTPUT_DATA_SAFE during the current cycle.0: Indicates no new safe data has been refreshed.
HEALTH	BOOL	<ul style="list-style-type: none">1: Indicates the data in the User Safety Data area is safe.0: Indicates the data in the User Safety Data area is not safe.
TIME_DIFF	INT	Returns the age (in ms) of the data received and written in the OUTPUT_DATA_SAFE output parameter. Set to -1 if the internal NTP time is not initialized or if no correct data has yet been received.

INPUT_DATA and OUTPUT_DATA_SAFE Arrays Description


The INPUT_DATA arrays consist of data coming from the process data memory area. The OUTPUT_DATA_SAFE arrays consist of safety variables. Use the **Safety Data Interface** and the **Process Data Interface** tabs in Control Expert to make the link between the process variables and the safety variables.

INPUT_DATA and OUTPUT_DATA_SAFE arrays are composed of 2 zones:

- The **User Safety Data** zone contains user data. This zone starts at index 0 and finishes at index 90.
- The **Reserved Data** zone is reserved for auto-generated diagnostic data, including a CRC and time-stamp. This data is used by the receiving PAC to determine if the data contained in the **User Safety Data** zone is safe or not. This zone starts at index 91 and finishes at index 99.

NOTE: Writing in the **Reserved Data** zone is not recommended, as doing so will overwrite the auto-generated diagnostic data.

INPUT_DATA and OUTPUT_DATA_SAFE arrays (array[0..99] of INT) structure representation:

CONTROL_DATA Array Description

The CONTROL_DATA array has to be linked with variables in “Global” area (defined through the “Safety Data Interface”) and then, “Global” variables have to be linked to located variables in “Process” area (defined through the “Process Data Interface”) in order the data to be sent by IO Scanner to the correspondent sender.

Calculating a SAFETY_CONTROL_TIMEOUT Value

When calculating a SAFETY_CONTROL_TIMEOUT value, consider the following:

- Minimum value: SAFETY_CONTROL_TIMEOUT > 2*T1
- Recommended value: SAFETY_CONTROL_TIMEOUT > 3 * T1

$T1 = CPU_{sender} \text{ MAST cycle time} + CPU_{sender} \text{ SAFE cycle time} + \text{Repetitive_rate} + \text{Network transmission time} + CPU_{receiver} \text{ MAST cycle time} + CPU_{receiver} \text{ SAFE cycle time}$

Where:

- $CPU_{sender} \text{ MAST cycle time}$ is the MAST cycle time of the sender PAC.
- $CPU_{sender} \text{ SAFE cycle time}$ is the SAFE cycle time of the sender PAC.
- Repetitive_rate is the time rate for the I/O scanner write query from the sender PAC to the receiver PAC.
- $\text{Network transmission time}$ is the time consumed on the Ethernet network for the data transmission from the sender PAC to the receiver PAC.

- $CPU_{receiver}$ MAST cycle time is the MAST cycle time of the receiver PAC.
- $CPU_{receiver}$ SAFE cycle time is the SAFE cycle time of the receiver PAC.

Note that the value defined for the SAFETY_CONTROL_TIMEOUT parameter has a direct effect on the robustness and availability of the safe peer-to-peer communication. If the SAFETY_CONTROL_TIMEOUT parameter value greatly exceeds T1, the communication will be tolerant to various delays (for example network delays) or corrupted data transmissions.

You are responsible for configuring your Ethernet network so the load that does not cause an excessive delay on the network during data transmission, which could lead to the expiration of the timeout. To help safeguard your safe peer-to-peer communications from any excessive delays due to other non-safety data transmitted on the same network, consider using a dedicated Ethernet network for the safe peer-to-peer protocol.

When commissioning your project, you have to estimate the safe peer-to-peer communication performance by checking the values provided in the output parameter TIME_DIFF and evaluating the margin using the value defined in the SAFETY_CONTROL_TIMEOUT parameter.

Understanding the **HEALTH** Bit

When the **HEALTH** bit value equals:

- 1: The integrity of the data is correct (CRC) and the age of the data is less than the value set in the SAFETY_CONTROL_TIMEOUT input register.

NOTE: The age of the data considered is the time between:

- The beginning of the cycle where the data are computed in the sender PAC.
- The beginning of the cycle where the data are checked in the receiver PAC.

- 0: New valid data are not received in the required time interval (the timer expires and the **HEALTH** bit is set to 0).

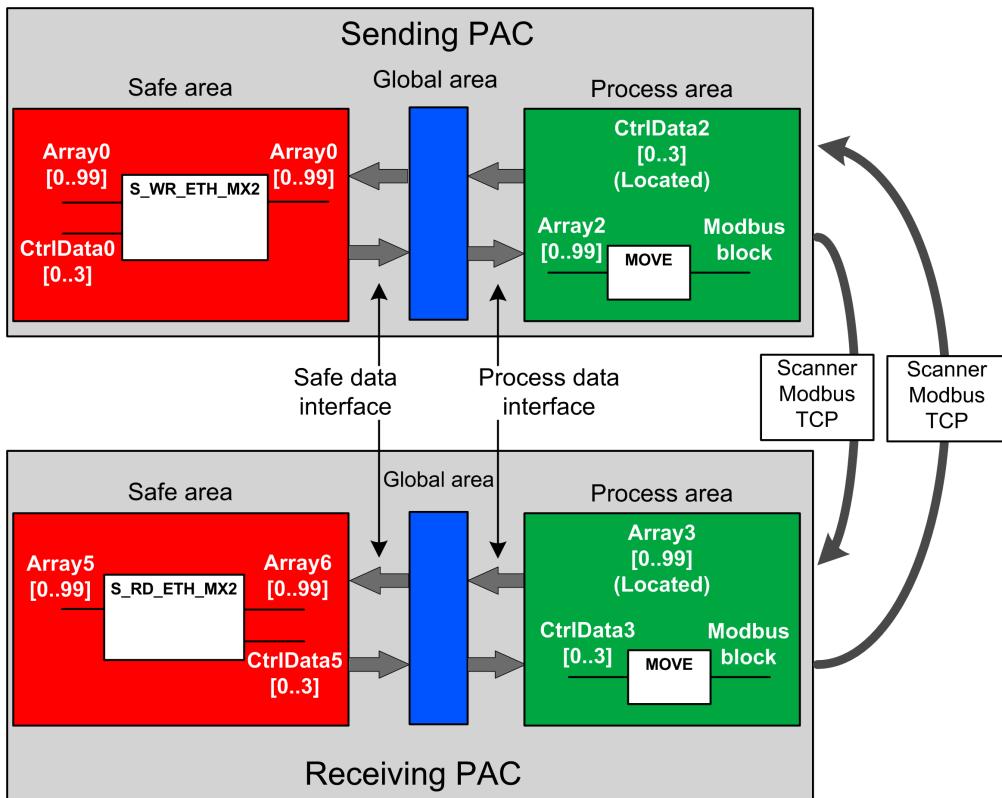
NOTE: If the **HEALTH** bit is set to 0, the data in the output array OUTPUT_DATA_SAFE is considered to be unsafe; respond accordingly.

S_WR_ETH_MX2: Safe Mx80 PAC-PAC Ethernet Communication Function

What's in This Chapter

Description	45
-------------------	----

Introduction


This chapter describes the S_WR_ETH_MX2 block.

Description

Function Description

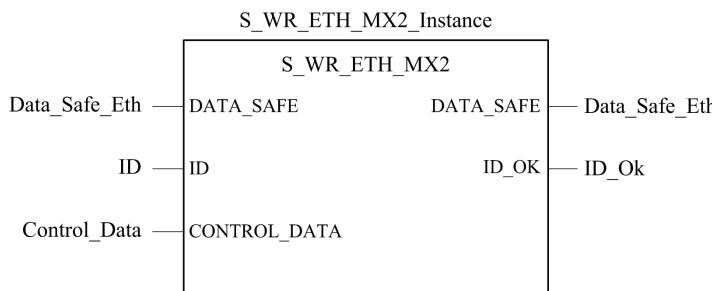
Use the `S_WR_ETH_MX2` function block together with the `S_RD_ETH_MX2` function block to complete a transfer of safety data between safety CPUs with firmware 3.20 or later. Each safety CPU is designed to insulate safety data from process data by passing data through a global area that is accessible to both the safety and process areas. In this way process functions do not directly impact safety data.

NOTE: When configuring safe communications between M580 Safety CPUs and Quantum Safety CPUs, use the `S_RD_ETH_MX`, page 26 and `S_WR_ETH_MX`, page 33 function blocks, instead of the `S_RD_ETH_MX2` and `S_WR_ETH_MX2` function blocks.

`EN` and `ENO` can be configured as additional parameters.

The `S_WR_ETH_MX2` function block is used by a sender PAC to:

- Calculate the CRC of the safety data to be sent.


- Calculate the time stamp to be sent with the data. The time stamp is based on a time base reference that is periodically updated with the monotonic time received from the operating system.
- Generate a unique message identifier that is added to the CRC to help prevent masquerade and insertion attacks on the transmission of safety data array.
- Insert the calculated CRC and time stamp at the end of the data array to be sent.

The S_WR_ETH_MX2 function block has to be called as part of each cycle in the sender PAC. Within the cycle logic, it has to be executed after all required modifications have been performed on the data to be sent. The data to be sent may not be modified by after the execution of the S_WR_ETH_MX2 function block, otherwise the CRC information appended to the transmitted data will not be correct and the safe peer-to-peer communication will not succeed.

NOTE: For additional information, refer to chapter *Peer to Peer Communications* (see Modicon M580, Safety Manual).

Representation in FBD

Representation

Input/Output Parameter

Description of the input/output parameter:

Parameter	Data Type	Meaning
DATA_SAFE	ARRAY [0..99] of INT	<p>Array of safety data variables. Composed of “User safety data” (from index 0 to 90) and “Reserved data” (from index 91 to 99).</p> <p>NOTE: Define these data variables as shared output variables, each with an equivalent global variable, using the Safety Data Interface tab in Control Expert.</p>

Input Parameter

Description of the input parameter:

Parameter	Data Type	Meaning
ID	INT	Communication identifier. The ID value is used to calculate the CRC. It is unique and has the same value as the value used by the sender. NOTE: Assign a unique value to the ID parameter that identifies the safe peer-to-peer communication between a sender and a receiver.
CONTROL_DATA	ARRAY [0..3] of INT	Contains ID and time stamp based on system monotonic time coming from correspondent receiver (S_RD_ETH_MX2 DFB).

Output Parameter

Description of output parameter:

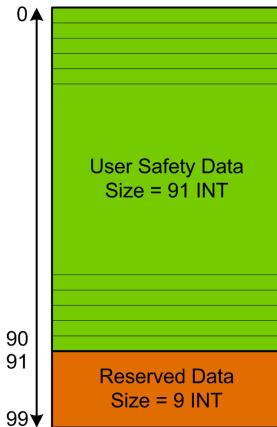
Parameter	Data Type	Meaning
ID_OK	BOOL	<ul style="list-style-type: none">• 1: Indicates that ID in data on CONTROL_DATA input and data on ID input match.• 0: Indicates that ID in data on CONTROL_DATA input and data on ID input do not match.

DATA_SAFE Array Description

Use the **Interface** tabs in both the **Safety Data Editor** and the **Process Data Editor** in Control Expert to make the link between the process variables and the safety variables.

Linking process and safety variables in this manner makes it possible to:

- Transfer the value of safety variables to process variables, via linked global variables.
- Send variable values from the process area of the sending PAC to the process area of the receiving PAC, via explicit messaging over Modbus TCP.


DATA_SAFE array is composed of two zones:

- The **User Safety Data** zone contains the data from the safe area of the PAC. This zone starts at index 0 and finishes at index 90.

- The **Reserved Data** zone is reserved for auto-generated diagnostic data, including a CRC and time-stamp. This data is used by the receiving PAC to determine if the data contained in the **User Safety Data** zone is safe or not. This zone starts at index 91 and finishes at index 99.

NOTE: Do not write in the **Reserved Data** zone.

DATA_SAFE array (array[0..99] of INT) structure representation:

Comparison

What's in This Part

S_EQ_***: Equal To	50
S_GE_***: Greater Than or Equal To	53
S_GT_***: Greater Than	56
S_LE_***: Less Than or Equal To	59
S_LT_***: Less Than	62
S_NE_***: Not Equal To	65

Introduction

This section describes the elementary functions and elementary function blocks of the Comparison family.

S_EQ_***: Equal To

What's in This Chapter

Description	50
-------------------	----

Introduction

This chapter describes the S_EQ_*** block.

Description

Function Description

The function checks the inputs for equality, i.e. the output becomes 1 if there is equality at all inputs; otherwise, the output remains at 0.

The data types of all input values must be identical.

The number of inputs can be increased to a maximum of 32.

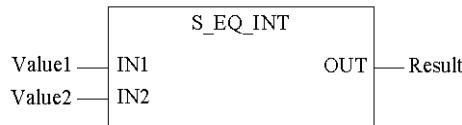
When comparing variables of the BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT and REAL data types, the values are compared with each other.

EN and ENO can be configured as additional parameters.

Formula

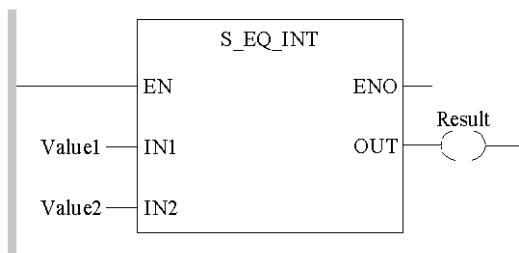
$OUT = 1, \text{ if } (IN1 = IN2) \& (IN2 = IN3) \& \dots \& (IN_{n-1} = IN_n)$

Available Functions


List of available functions

- S_EQ_BOOL
- S_EQ_BYTE

- S_EQ_WORD
- S_EQ_DWORD
- S_EQ_INT
- S_EQ_DINT
- S_EQ_UINT
- S_EQ_UDINT
- S_EQ_REAL


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
Value1	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT, REAL	1. input
Value2	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT, REAL	2. input
Valuen	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT, REAL	n. input n = max 32

Description of the output parameter

Parameter	Data Type	Meaning
Result	BOOL	output

S_GE_***: Greater Than or Equal To

What's in This Chapter

Description	53
-------------------	----

Introduction

This chapter describes the S_GE_*** block.

Description

Function Description

The function checks the values of successive inputs for a decreasing sequence or equality.

The data types of all input values must be identical.

The number of inputs can be increased to a maximum of 32.

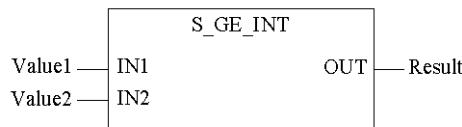
When comparing variables of the BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT and REAL data types, the values are compared with each other.

EN and ENO can be configured as additional parameters.

Formula

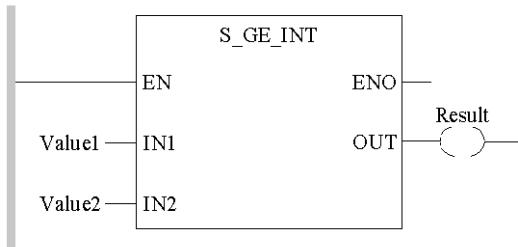
$OUT = 1, \text{ if } (IN1 \geq IN2) \& (IN2 \geq IN3) \& \dots \& (IN_{(n-1)} \geq IN_n)$

Available Functions


List of available functions

- S_GE_BOOL
- S_GE_BYTE
- S_GE_WORD

- S_GE_DWORD
- S_GE_INT
- S_GE_DINT
- S_GE_UINT
- S_GE_UDINT
- S_GE_REAL


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
Value1	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT, REAL	1. input
Value2	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT, REAL	2. input
Valuen	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT, REAL	n. input n = max 32

Description of the output parameter

Parameter	Data Type	Meaning
Result	BOOL	output

S_GT_***: Greater Than

What's in This Chapter

Description	56
-------------------	----

Introduction

This chapter describes the S_GT_*** block.

Description

Function Description

The function checks the values of successive inputs for a decreasing sequence.

The data types of all input values must be identical.

The number of inputs can be increased to a maximum of 32.

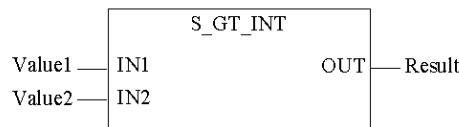
When comparing variables of the BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT and REAL data types, the values are compared with each other.

EN and ENO can be configured as additional parameters.

Formula

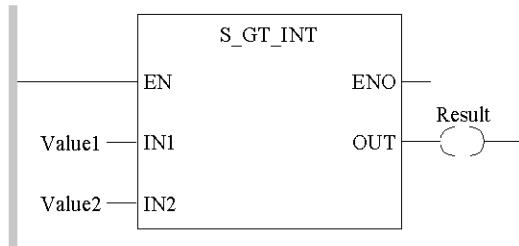
OUT = 1, if (IN1 > IN2) & (IN2 > IN3) & .. (IN_{(n-1}) > IN_n)

Available Functions


List of available functions

- S_GT_BOOL
- S_GT_BYTE
- S_GT_WORD

- S_GT_DWORD
- S_GT_INT
- S_GT_DINT
- S_GT_UINT
- S_GT_UDINT
- S_GT_REAL


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
Value1	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT, REAL	1. input
Value2	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT, REAL	2. input
Valuen	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT, REAL	n. input n = max 32

Description of the output parameter

Parameter	Data Type	Meaning
Result	BOOL	output

S_LE_***: Less Than or Equal To

What's in This Chapter

Description	59
-------------------	----

Introduction

This chapter describes the S_LE_*** block.

Description

Function Description

The function checks the values of successive inputs for an increasing sequence or equality.

The data types of all input values must be identical.

The number of inputs can be increased to a maximum of 32.

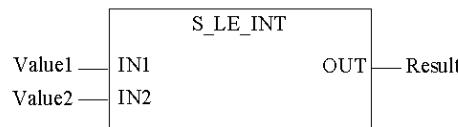
When comparing variables of the BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT and REAL data types, the values are compared with each other.

EN and ENO can be configured as additional parameters.

Formula

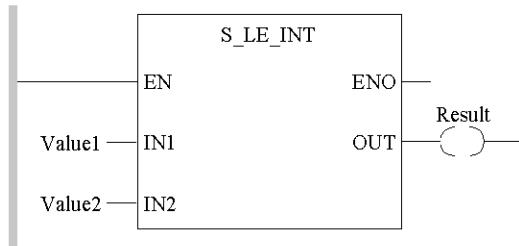
$OUT = 1, \text{ if } (IN1 \leq IN2) \& (IN2 \leq IN3) \& \dots \& (IN_{(n-1)} \leq IN_n)$

Available Functions


List of available functions

- S_LE_BOOL
- S_LE_BYTE
- S_LE_WORD

- S_LE_DWORD
- S_LE_INT
- S_LE_DINT
- S_LE_UINT
- S_LE_UDINT
- S_LE_REAL


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
Value1	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT, REAL	1. input
Value2	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT, REAL	2. input
Valuen	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT, REAL	n. input n = max 32

Description of the output parameter

Parameter	Data Type	Meaning
Result	BOOL	output

S_LT_***: Less Than

What's in This Chapter

Description	62
-------------------	----

Introduction

This chapter describes the S_LT_*** block.

Description

Function Description

The function checks the values of successive inputs for an increasing sequence.

The data types of all input values must be identical.

The number of inputs can be increased to a maximum of 32.

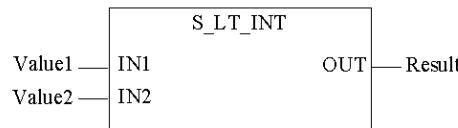
When comparing variables of the BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT and REAL data types, the values are compared with each other.

EN and ENO can be configured as additional parameters.

Formula

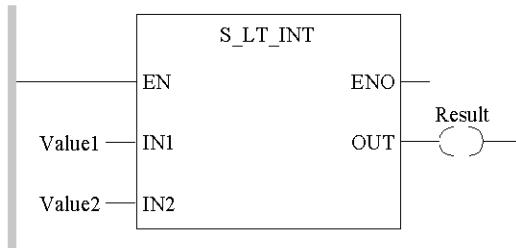
$OUT = 1, \text{ if } (IN1 < IN2) \& (IN2 < IN3) \& \dots \& (IN_{(n-1)} < IN_n)$

Available Functions


List of available functions

- S_LT_BOOL
- S_LT_BYTE
- S_LT_WORD

- S_LT_DWORD
- S_LT_INT
- S_LT_DINT
- S_LT_UINT
- S_LT_UDINT
- S_LT_REAL


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
Value1	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT, REAL	1. input value
Value2	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT, REAL	2. input value
Valuen	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT, REAL	n. input value n = max 32

Description of the output parameter

Parameter	Data Type	Meaning
Result	BOOL	output value

S_NE_***: Not Equal To

What's in This Chapter

Description	65
-------------------	----

Introduction

This chapter describes the S_NE_*** block.

Description

Function Description

The function checks the input values for inequality.

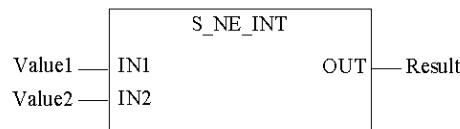
The data types of the input values must be identical.

EN and ENO can be configured as additional parameters.

Formula

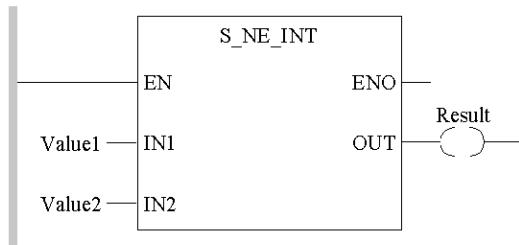
OUT = 1, if IN1 < > IN2

Available Functions


List of available functions

- S_NE_BOOL
- S_NE_BYTE
- S_NE_WORD
- S_NE_DWORD
- S_NE_INT
- S_NE_DINT

- S_NE_UINT
- S_NE_UDINT
- S_NE_REAL


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
Value1	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT, REAL	1. input
Value2	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT, REAL	2. input

Description of the output parameter

Parameter	Data Type	Meaning
Result	BOOL	output

Actuator

What's in This Part

S_EDM: Actuator Error Detection Monitoring	69
S_ENABLE_SWITCH: Three Position Enable Switch	79
S_ESPE: Electro-Sensitive Protective Equipment	87
S_GUARD_LOCKING: Guard Lock Control	95
S_GUARD_MONITORING: Guard Lock Monitoring	103
S_MODE_SELECTOR: Safety Mode Switch	113
S_OUTCONTROL: Output Driver	121

Introduction

This section describes the elementary functions and elementary function blocks of the **Actuator family**.

S_EDM: Actuator Error Detection Monitoring

What's in This Chapter

Description	69
-------------------	----

Introduction

This chapter describes the S_EDM block.

Description

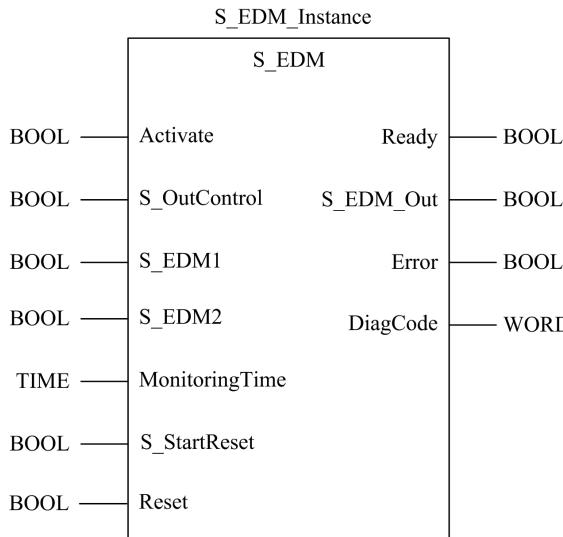
Function Description

The S_EDM function block:

- Controls a safety output and monitors controlled actuators.
- Monitors the initial state of the actuators via the feedback signals S_EDM1 and S_EDM2 before enabling the actuators.
- Monitors the switching state of the actuators (`MonitoringTime`) after the actuators have been enabled by the function block.

Use two single feedback signals to diagnose the connected actuators. The function block uses a common feedback signal from the two connected actuators for a restricted yet simple diagnostic function of the connected actuators. Connect this common signal to both parameter S_EDM1 and parameter S_EDM2 so that these two parameters can be controlled by the same signal.

WARNING


RISK OF UNINTENDED OPERATION

Activate the S_StartReset and S_AutoReset inputs only after you verify that no hazardous situation can occur if the system is started.

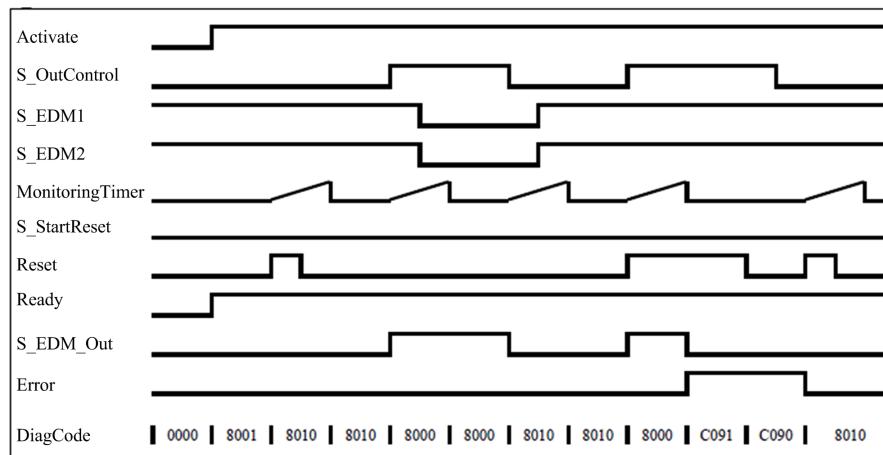
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Representation in FBD

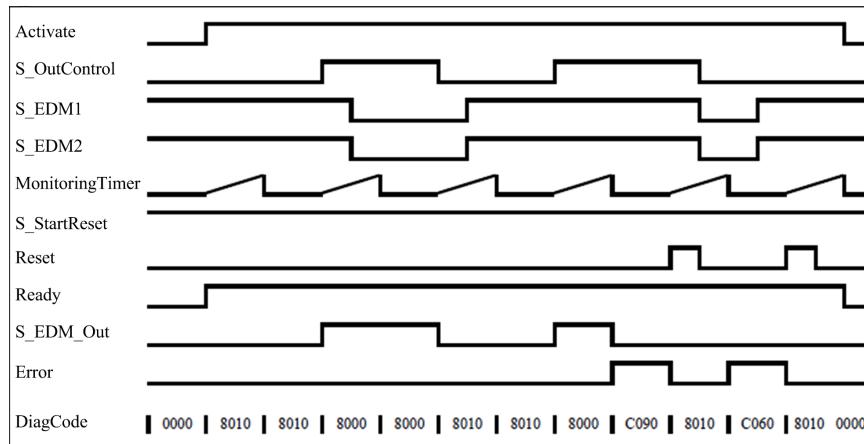
Representation

Input Parameters

Parameter	Data type	Init Value	Meaning
Activate	BOOL	FALSE	<p>The variable or constant value indicating activation state of the function block. This parameter can be connected to the variable, which represents the status (Active or Not Active) of the relevant safety device. This causes no irrelevant diagnostic information to be generated if a device is disabled:</p> <ul style="list-style-type: none"> When FALSE, all output variables are set to the initial values. Assign a static TRUE signal if no device is connected.
S_OutControl	BOOL	FALSE	<p>The variable control signal of the preceding safety function blocks. Typical function block signals from the library (e.g., S_OutControl, S_Two_Hand_Control_Type_II):</p> <ul style="list-style-type: none"> FALSE: Disable safety output (S_EDM_Out). TRUE: Enable safety output (S_EDM_Out).
S_EDM1	BOOL	FALSE	The variable feedback signal of the first connected actuator:

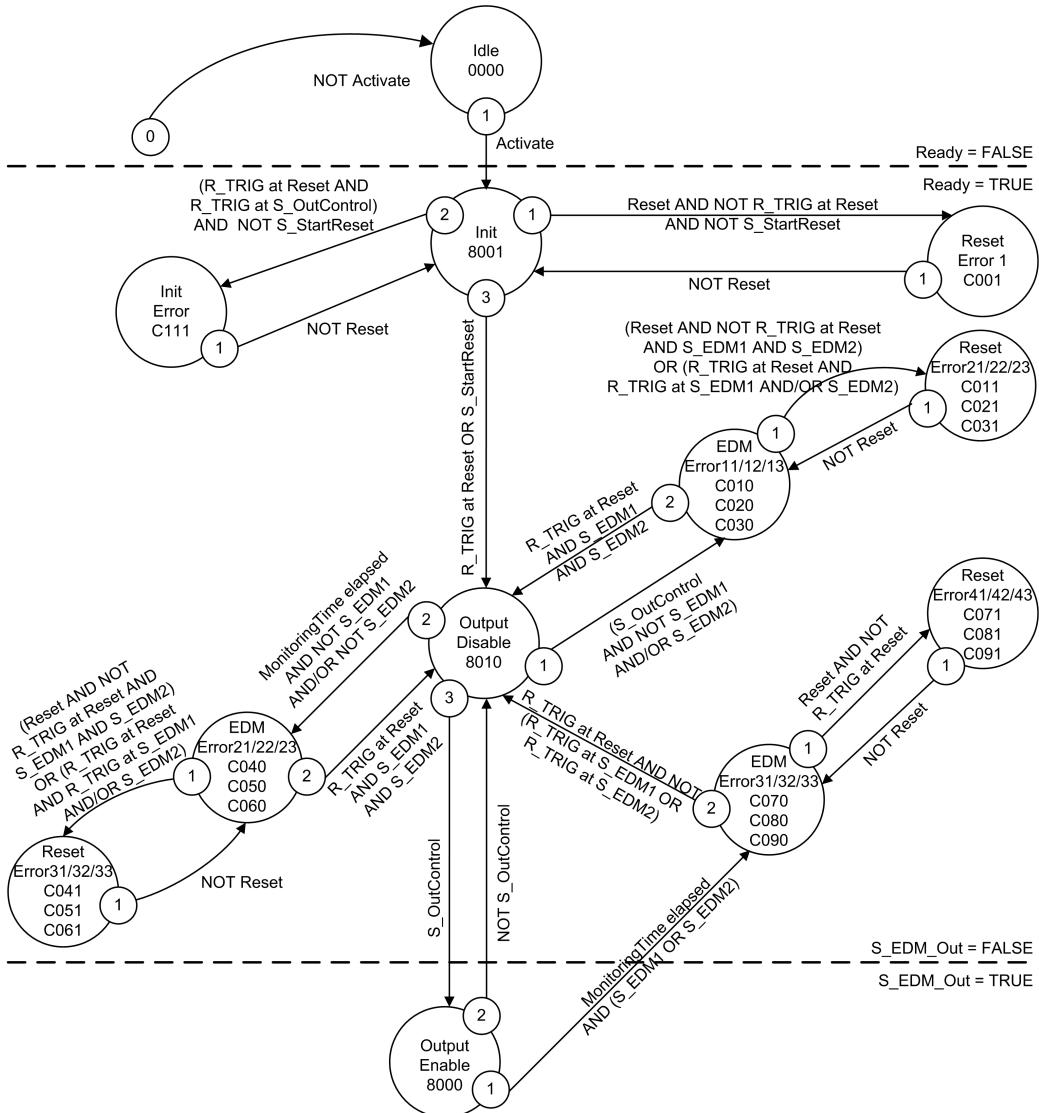

Parameter	Data type	Init Value	Meaning
			<ul style="list-style-type: none"> • FALSE: Switching state of the first connected actuator. • TRUE: Initial state of the first connected actuator.
S_EDM2	BOOL	FALSE	<p>The variable feedback signal of the second connected actuator. If using only one signal in the application, use a graphic connection to jumper the S_EDM1 and S_EDM2 parameters. S_EDM1 and S_EDM2 are then controlled by the same signal:</p> <ul style="list-style-type: none"> • FALSE: Switching state of the second connected actuator. • TRUE: Initial state of the second connected actuator.
Monitoring-Time	TIME	T#0ms	Maximum response time of the connected and monitored actuators. A constant value.
S_StartReset	BOOL	FALSE	<p>The variable or constant reset setting:</p> <ul style="list-style-type: none"> • FALSE: Manual reset when system is started (warm or cold). • TRUE: Automatic reset when system is started (warm or cold). <p>NOTE: Activate this function only after you have confirmed that no hazard can occur at the start of the PES. Use of the Automatic Circuit Reset feature of the function blocks requires implementation of other system or application measures to guard against unexpected (or unintended) start-up.</p>
Reset	BOOL	FALSE	<p>The variable value indicating reset of the state machine, coupled with detected error and status messages as indicated in the DiagCode parameter, after the underlying cause of the detected error has been removed. This behavior is designed as a detected error reset.</p> <p>NOTE: This function is only active on a signal change from FALSE to TRUE.</p>

Output Parameters


Parameter	Data type	Init Value	Meaning
Ready	BOOL	FALSE	<ul style="list-style-type: none"> TRUE indicates that the function block is activated and the output results are valid (same as the POWER LED of a safety relay). FALSE indicates the function block is not active and the program is not executed. <p>NOTE: This parameter can be useful in debug mode or to activate/deactivate additional function blocks, as well as for further processing in the functional program.</p>
S_EDM_Out	BOOL	FALSE	Controls the actuator. The result is monitored by the feedback signal S_EDMx: <ul style="list-style-type: none"> FALSE: Disable connected actuators. TRUE: Enable connected actuators.
Error	BOOL	FALSE	Function block detected error message.
DiagCode	WORD	16#0000	Function block diagnostic message.

Typical Timing Diagrams

S_StartReset = False



S_StartReset = True

State Diagram

The following diagram describes the state transitions of the S_EDM function block:

Source: PLcopen - Technical Committee 5, Safety Software, Technical Specification, Part 1: Concepts and Function Blocks, Version 1.0.

NOTE: The transition to the Idle state from any other state, occurring because $\text{Activate} = \text{FALSE}$, is not depicted. Such a transition has the highest priority (0).

Error Detection

The following conditions force a transition to the detected error state:

- Invalid static signal in the process.
- Invalid `S_EDM1` or `S_EDM2` signal in the process.
- `S_OutControl` and `Reset` are incorrectly interconnected as a result of a programming error.

Detected Error Management

When an error is detected, the outputs are as follows:

- `S_EDM_Out` is set to FALSE and remains in the safe state.
- Always reset a detected EDM error message by means of a rising trigger at `Reset`.
- A detected `Reset` error message can be reset by setting `Reset` to FALSE.

After block activation, the optional start-up inhibit can be reset by a rising edge at the `Reset` input.

When returning a detected error message, the `DiagCode` parameter can present one of the following detected error values:

DiagCode	State Name	State Description and Output Settings
C001	Reset Error 1	Static <code>Reset</code> signal in state 8001: <ul style="list-style-type: none"> • <code>S_EDM_Out</code> = FALSE • <code>Error</code> = TRUE
C011	Reset Error 21	Static <code>Reset</code> signal or same signals at <code>S_EDM1</code> and <code>Reset</code> (rising trigger at <code>Reset</code> and <code>S_EDM1</code> at the same time) in state C010: <ul style="list-style-type: none"> • <code>S_EDM_Out</code> = FALSE • <code>Error</code> = TRUE
C021	Reset Error 22	Static <code>Reset</code> signal or same signals at <code>S_EDM2</code> and <code>Reset</code> (rising trigger at <code>Reset</code> and <code>S_EDM2</code> at the same time) in state C020: <ul style="list-style-type: none"> • <code>S_EDM_Out</code> = FALSE • <code>Error</code> = TRUE
C031	Reset Error 23	Static <code>Reset</code> signal or same signals at <code>S_EDM1</code> , <code>S_EDM2</code> , and <code>Reset</code> (rising trigger at <code>Reset</code> , <code>S_EDM1</code> , and <code>S_EDM2</code> at the same time) in state C030: <ul style="list-style-type: none"> • <code>S_EDM_Out</code> = FALSE • <code>Error</code> = TRUE
C041	Reset Error 31	Static <code>Reset</code> signal or same signals at <code>S_EDM1</code> and <code>Reset</code> (rising trigger at <code>Reset</code> and <code>S_EDM1</code> at the same time) in state C040:

DiagCode	State Name	State Description and Output Settings
		<ul style="list-style-type: none"> • S_EDM_Out = FALSE • Error = TRUE
C051	Reset Error 32	Static Reset signal or same signals at S_EDM2 and Reset (rising trigger at Reset and S_EDM2 at the same time) in state C050: <ul style="list-style-type: none"> • S_EDM_Out = FALSE • Error = TRUE
C061	Reset Error 33	Static Reset signal or same signals at S_EDM1, S_EDM2, and Reset (rising trigger at Reset, S_EDM1, and S_EDM2 at the same time) in state C060: <ul style="list-style-type: none"> • S_EDM_Out = FALSE • Error = TRUE
C071	Reset Error 41	Static Reset signal in state C070: <ul style="list-style-type: none"> • S_EDM_Out = FALSE • Error = TRUE
C081	Reset Error 42	Static Reset signal in state C080: <ul style="list-style-type: none"> • S_EDM_Out = FALSE • Error = TRUE
C091	Reset Error 43	Static Reset signal in state C090: <ul style="list-style-type: none"> • S_EDM_Out = FALSE • Error = TRUE
C010	EDM Error 11	The signal at S_EDM1 is not valid in the initial actuator state. In state 8010 the S_EDM1 signal is FALSE when enabling S_OutControl: <ul style="list-style-type: none"> • S_EDM_Out = FALSE • Error = TRUE
C020	EDM Error 12	The signal at S_EDM2 is not valid in the initial actuator state. In state 8010 the S_EDM2 signal is FALSE when enabling S_OutControl: <ul style="list-style-type: none"> • S_EDM_Out = FALSE • Error = TRUE
C030	EDM Error 13	The signals at S_EDM1 and S_EDM2 are not valid in the initial actuator states. In state 8010 the S_EDM1 and S_EDM2 signals are FALSE when enabling S_OutControl: <ul style="list-style-type: none"> • S_EDM_Out = FALSE • Error = TRUE
C040	EDM Error 21	The signal at S_EDM1 is not valid in the initial actuator state. In state 8010 the S_EDM1 signal is FALSE and the monitoring time has elapsed: <ul style="list-style-type: none"> • S_EDM_Out = FALSE • Error = TRUE
C050	EDM Error 22	The signal at S_EDM2 is not valid in the initial actuator state. In state 8010 the S_EDM2 signal is FALSE and the monitoring time has elapsed: <ul style="list-style-type: none"> • S_EDM_Out = FALSE

DiagCode	State Name	State Description and Output Settings
		<ul style="list-style-type: none"> • Error = TRUE
C060	EDM Error 23	<p>The signals at S_EDM1 and S_EDM2 are not valid in the initial actuator states. In state 8010 the S_EDM1 and S_EDM2 signals are FALSE and the monitoring time has elapsed:</p> <ul style="list-style-type: none"> • S_EDM_Out = FALSE • Error = TRUE
C070	EDM Error 31	<p>The signal at S_EDM1 is not valid in the actuator switching state. In state 8000 the S_EDM1 signal is TRUE and the monitoring time has elapsed:</p> <ul style="list-style-type: none"> • S_EDM_Out = FALSE • Error = TRUE
C080	EDM Error 32	<p>The signal at S_EDM2 is not valid in the actuator switching state. In state 8000 the S_EDM2 signal is TRUE and the monitoring time has elapsed:</p> <ul style="list-style-type: none"> • S_EDM_Out = FALSE • Error = TRUE
C090	EDM Error 33	<p>The signals at S_EDM1 and S_EDM2 are not valid in the initial actuator state. In state 80090 the S_EDM1 and S_EDM2 signals are TRUE and the monitoring time has elapsed:</p> <ul style="list-style-type: none"> • S_EDM_Out = FALSE • Error = TRUE
C111	Init Error	<p>Similar signals at S_OutControl and Reset (R_TRIG at same cycle) detected (may be a programming error):</p> <ul style="list-style-type: none"> • S_EDM_Out = FALSE • Error = TRUE

Diagnostic Codes Management

When returning a status message, the Error parameter is set to FALSE, and the DiagCode parameter displays one of the following hexadecimal values:

DiagCode	State Name	State Description and Output Settings
0	IDLE	<p>The function block is not active (initial state):</p> <ul style="list-style-type: none"> • S_EDM_Out = FALSE • Error = FALSE
8001	INIT	<p>Block activation startup inhibit is active. Reset required:</p> <ul style="list-style-type: none"> • S_EDM_Out = FALSE • Error = FALSE

DiagCode	State Name	State Description and Output Settings
8010	Output Disable	EDM control is not active. Timer starts when state is entered: <ul style="list-style-type: none">• <code>S_EDM_Out = FALSE</code>• <code>Error = FALSE</code>
8000	Output Enable	EDM control is active. Timer starts when state is entered. EDM control is active. Timer starts when state is entered: <ul style="list-style-type: none">• <code>S_EDM_Out = TRUE</code>• <code>Error = FALSE</code>

S_ENABLE_SWITCH: Three Position Enable Switch

What's in This Chapter

Description	79
-------------------	----

Introduction

This chapter describes the S_ENABLE_SWITCH block.

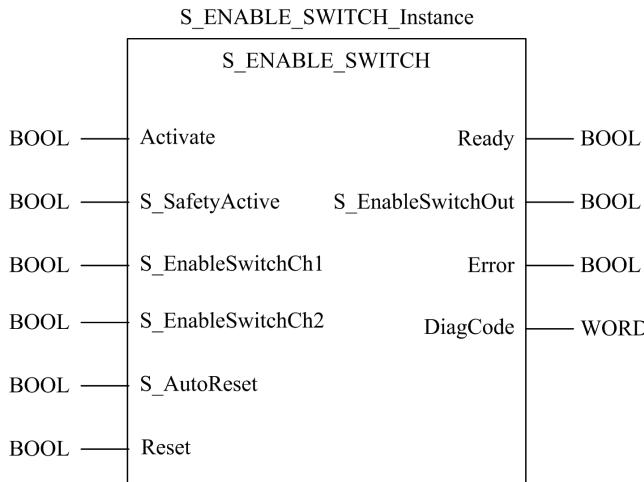
Description

Function Description

Use the S_ENABLE_SWITCH function block to support the suspension of safeguarding by means of a manually operated three-position enable switch, when the corresponding operating mode (for example, limitation of the speed or the power of the motion, or limitation of the range of the motion) has been selected and is active.

You select the corresponding operating mode outside the function block; then the function block evaluates the signals sent by the three-position enable switch.

WARNING


RISK OF UNINTENDED OPERATION

Activate the S_StartReset and S_AutoReset inputs only after you verify that no hazardous situation can occur if the system is started.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Representation in FBD

Representation

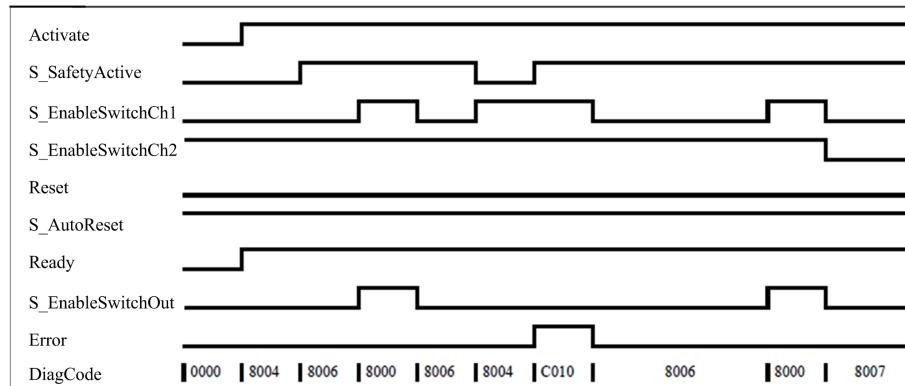
Input Parameters

Parameter	Data type	Init Value	Meaning
Activate	BOOL	FALSE	<p>The variable or constant value indicating activation state of the function block. This parameter can be connected to the variable, which represents the status (Active or Not Active) of the relevant safety device. This causes no irrelevant diagnostic information to be generated if a device is disabled:</p> <ul style="list-style-type: none"> When FALSE, all output variables are set to the initial values. Assign a static TRUE signal if no device is connected.
S_SafetyActive	BOOL	FALSE	<p>A variable or constant input confirmation signal (feedback signal) indicating that the selected safe operating mode is active:</p> <ul style="list-style-type: none"> FALSE: Safe mode is not active. TRUE: Safe mode is active.
S_EnableSwitchCh1	BOOL	FALSE	<p>A variable value resulting from the signal of contacts E1 and E2 of the connected manually operated three-position enable switch:</p> <ul style="list-style-type: none"> FALSE: Connected switches are open. TRUE: Connected switches are closed.

Parameter	Data type	Init Value	Meaning
S_EnableSwitchCh2	BOOL	FALSE	<p>A variable value resulting from the signal of contacts E3 and E4 of the connected manually operated three-position enable switch:</p> <ul style="list-style-type: none"> • FALSE: Connected switches are open. • TRUE: Connected switches are closed.
S_AutoReset	BOOL	FALSE	<p>A variable or constant value indicating the state of the auto reset function:</p> <ul style="list-style-type: none"> • FALSE: Manual reset when emergency stop button is released. • TRUE: Automatic reset when emergency stop button is released <p>NOTE: Activate this function only after you have confirmed that no hazard can occur at the start of the system. Use of the Automatic Circuit Reset feature of the function blocks requires implementation of other system or application measures to guard against unexpected (or unintended) start-up.</p>
Reset	BOOL	FALSE	<p>The variable value indicating reset of the state machine, coupled with detected error and status messages as indicated in the <code>DiagCode</code> parameter, after the underlying cause of the detected error has been removed. This behavior is designed as a detected error reset.</p> <p>NOTE: This function is only active on a signal change from FALSE to TRUE.</p>

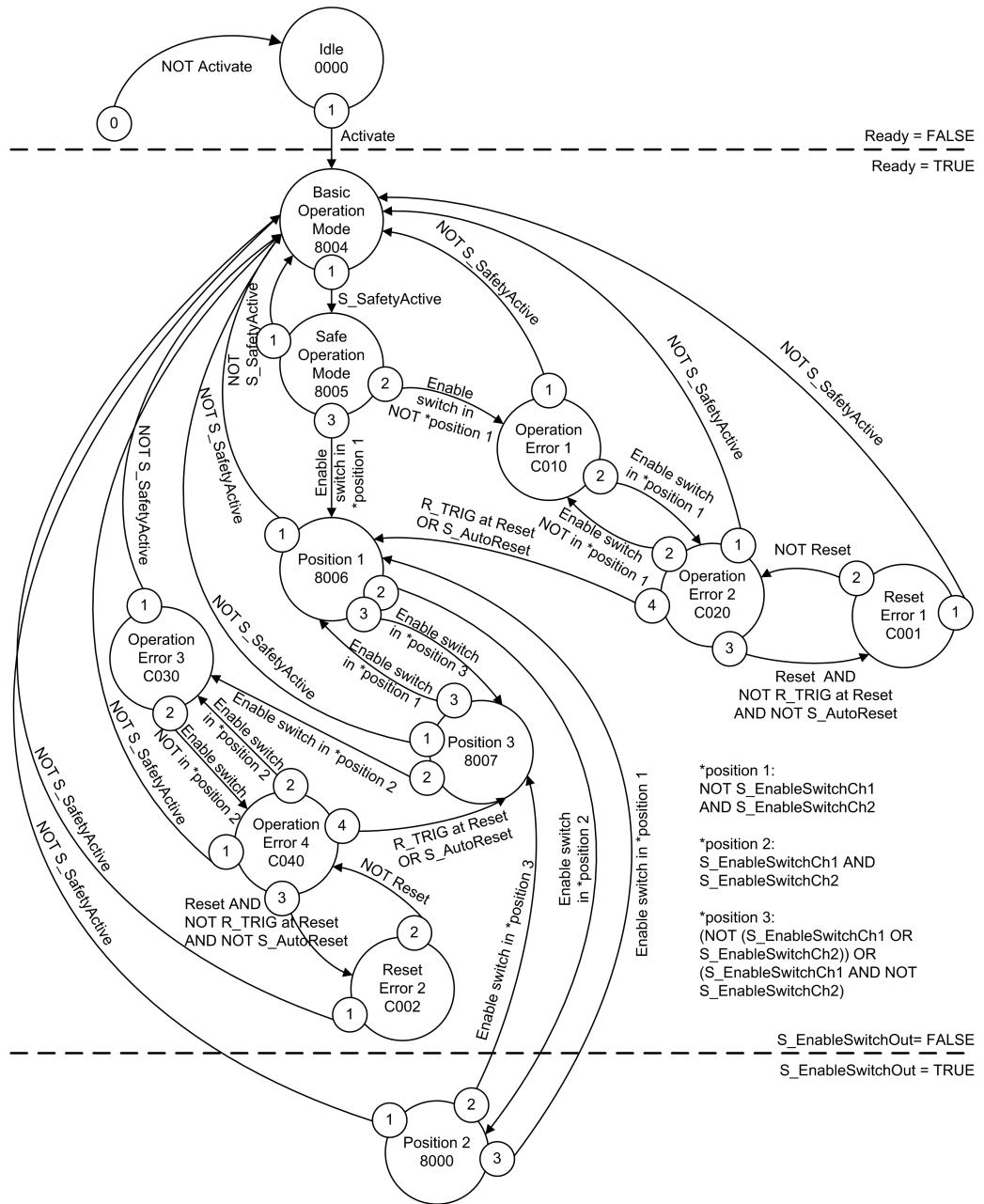
Output Parameters

Parameter	Data type	Init Value	Meaning
Ready	BOOL	FALSE	<ul style="list-style-type: none"> • TRUE indicates that the function block is activated and the output results are valid (same as the POWER LED of a safety relay). • FALSE indicates the function block is not active and the program is not executed. <p>NOTE: This parameter can be useful in debug mode or to activate/deactivate additional function blocks, as well as for further processing in the functional program.</p>
S_EnableSwitchOut	BOOL	FALSE	<p>A safety related output that indicates suspension of guard:</p> <ul style="list-style-type: none"> • FALSE: Disable suspension of the safeguarding. • TRUE: Enable suspension of the safeguarding.


Parameter	Data type	Init Value	Meaning
Error	BOOL	FALSE	Function block detected error message.
DiagCode	WORD	16#0000	Function block diagnostic message.

Typical Timing Diagrams

S_AutoReset = False



S_AutoReset = True

State Diagram

The following diagram describes the state transitions of the S_ENABLE_SWITCH function block:

Source: PLcopen - Technical Committee 5, Safety Software, Technical Specification, Part 1: Concepts and Function Blocks, Version 1.0.

NOTE: The transition to the Idle state from any other state, occurring because `Activate = FALSE`, is not depicted. Such a transition has the highest priority (0).

Error Detection

The following conditions force a transition to the detected error state:

- Invalid static `Reset` signal in the process.
- Invalid switch positions.

Detected Error Management

When an error is detected, the outputs are as follows:

- `S_EnableSwitchOut` is set to FALSE and remains in the safe state.
- Unlike other function blocks, a `Reset` error state need not be reset, but instead can be allowed to persist by the condition `Reset = FALSE` or when the signal `S_SafetyActive = FALSE`.
- After the detected error has been resolved, the `S_EnableSwitchOut` output can be set to TRUE using the enable switch, *provided* that the enable switch is in the initial position specified in the process. If `S_AutoReset = FALSE`, a rising trigger is required at `Reset`.

When returning a detected error message, the `DiagCode` parameter can present one of the following detected error values

DiagCode	State Name	State Description and Output Settings
C001	Reset Error 1	Static Reset signal detected in state C020: <ul style="list-style-type: none"> • <code>S_EnableSwitchOut = FALSE</code> • <code>Error = TRUE</code>
C002	Reset Error 2	Static Reset signal detected in state C040: <ul style="list-style-type: none"> • <code>S_EnableSwitchOut = FALSE</code> • <code>Error = TRUE</code>
C010	Operation Error 1	Enable switch not in position 1 during activation of <code>S_SafetyActive</code> : <ul style="list-style-type: none"> • <code>S_EnableSwitchOut = FALSE</code> • <code>Error = TRUE</code>
C020	Operation Error 2	Enable switch in position 1 after C010: <ul style="list-style-type: none"> • <code>S_EnableSwitchOut = FALSE</code> • <code>Error = TRUE</code>

DiagCode	State Name	State Description and Output Settings
C030	Operation Error 3	Enable switch in position 2 after position 3: <ul style="list-style-type: none"> S_EnableSwitchOut = FALSE Error = TRUE
C040	Operation Error 4	Enable switch not in position 2 after C030: <ul style="list-style-type: none"> S_EnableSwitchOut = FALSE Error = TRUE

Diagnostic Codes Management

When returning a status message, the `Error` parameter is set to FALSE, and the `DiagCode` parameter displays one of the following hexadecimal values:

DiagCode	State Name	State Description and Output Settings
0	IDLE	The function block is not active (initial state): <ul style="list-style-type: none"> S_EnableSwitchOut = FALSE Error = FALSE
8004	Basic Operation Mode	Safe operation mode is not active. Safe operation mode is not active: <ul style="list-style-type: none"> S_EnableSwitchOut = FALSE Error = FALSE
8005	Safe Operation Mode	Safe operation mode is active: <ul style="list-style-type: none"> S_EnableSwitchOut = FALSE Error = FALSE
8006	Position 1	Safe operation mode is active and the enable switch is in position 1: <ul style="list-style-type: none"> S_EnableSwitchOut = FALSE Error = FALSE
8007	Position 3	Safe operation mode is active and the enable switch is in position 3: <ul style="list-style-type: none"> S_EnableSwitchOut = FALSE Error = FALSE
8000	Position 2	Safe operation mode is active and the enable switch is in position 2: <ul style="list-style-type: none"> S_EnableSwitchOut = TRUE Error = FALSE

S_ESPE: Electro-Sensitive Protective Equipment

What's in This Chapter

Description	87
-------------------	----

Introduction

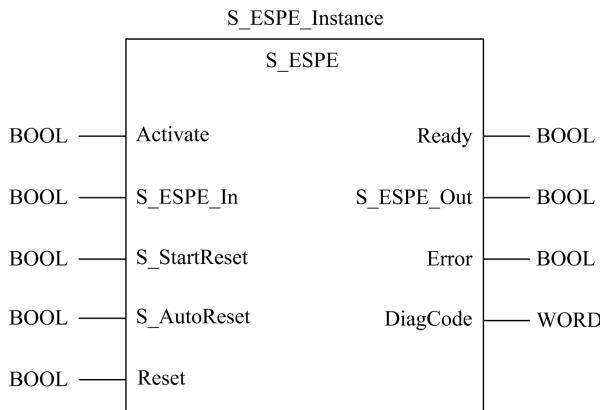
This chapter describes the S_ESPE block.

Description

Function Description

Use the S_ESPE function block to support the *electro-sensitive protective equipment* function in an application. This function block can monitor an item of electro-sensitive protective equipment.

WARNING


RISK OF UNINTENDED OPERATION

Activate the S_StartReset and S_AutoReset inputs only after you verify that no hazardous situation can occur if the system is started.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

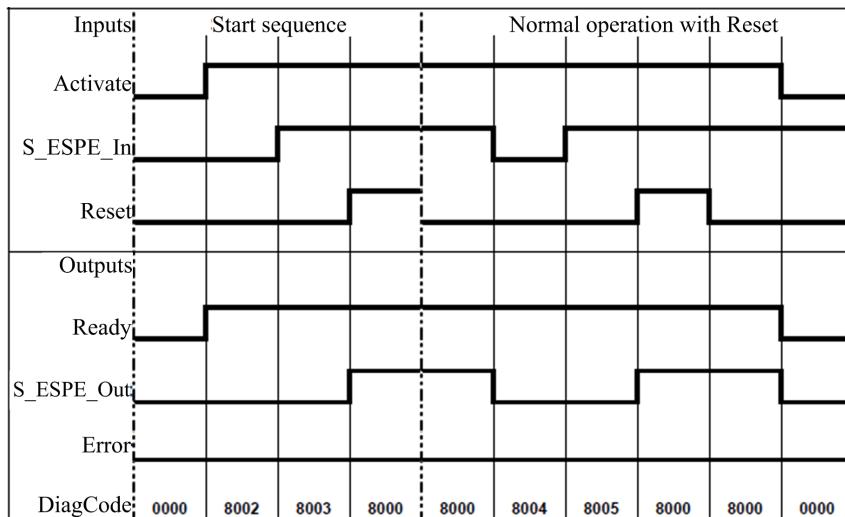
Representation in FBD

Representation

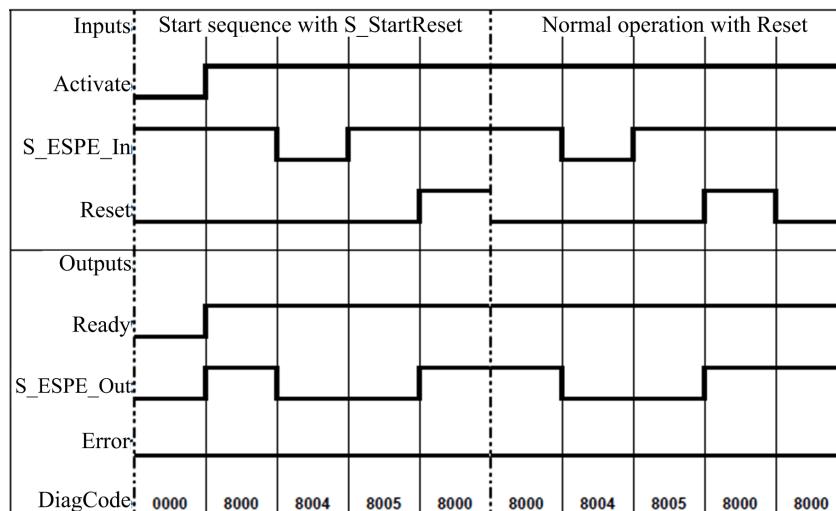
Input Parameters

Parameter	Data type	Init Value	Meaning
Activate	BOOL	FALSE	<p>The variable or constant value indicating activation state of the function block. This parameter can be connected to the variable, which represents the status (Active or Not Active) of the relevant safety device. This causes no irrelevant diagnostic information to be generated if a device is disabled:</p> <ul style="list-style-type: none"> When FALSE, all output variables are set to the initial values. Assign a static TRUE signal if no device is connected.
S_ESPE_In	BOOL	FALSE	<p>A variable or constant input signaling the status of the electro-sensitive protective equipment:</p> <ul style="list-style-type: none"> FALSE: ESPE activated, demand for safety related response. TRUE: ESPE not activated, no demand for a safety related response. <p>NOTE: When the ESPE is used in applications as a trip device, verify that the safety control system is able to detect a very short interruption of the sensor (as specified in IEC61496-1: a minimum 80 ms).</p>
S_StartReset	BOOL	FALSE	<p>A variable or constant value that indicates:</p> <ul style="list-style-type: none"> FALSE: Manual reset when system is started (warm or cold).

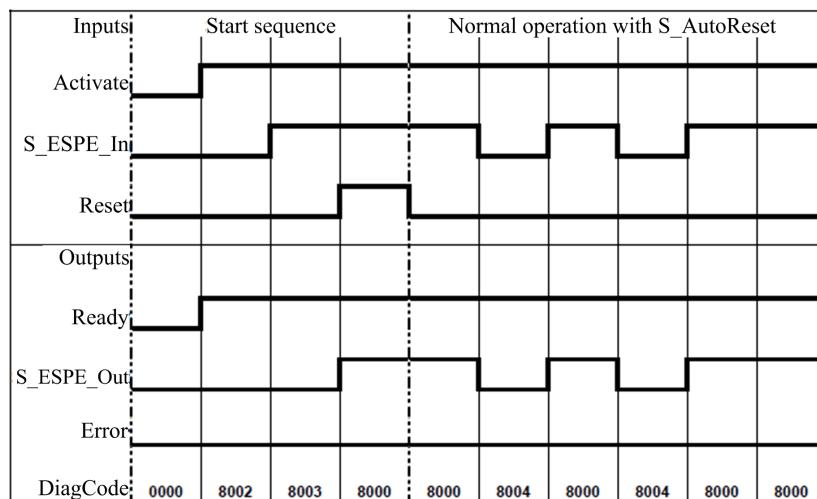
Parameter	Data type	Init Value	Meaning
			<ul style="list-style-type: none"> TRUE: Automatic reset when system is started (warm or cold). <p>NOTE: Activate this function only after you have confirmed that no hazard can occur at the start of the PES. Use of the Automatic Circuit Reset feature of the function blocks requires implementation of other system or application measures to guard against unexpected (or unintended) start-up.</p>
S_AutoReset	BOOL	FALSE	<p>A variable or constant value indicating the state of the auto reset function:</p> <ul style="list-style-type: none"> FALSE: Manual reset when emergency stop button is released. TRUE: Automatic reset when emergency stop button is released <p>NOTE: Activate this function only after you have confirmed that no hazard can occur at the start of the system. Use of the Automatic Circuit Reset feature of the function blocks requires implementation of other system or application measures to guard against unexpected (or unintended) start-up.</p>
Reset	BOOL	FALSE	<p>The variable value indicating reset of the state machine, coupled with detected error and status messages as indicated in the DiagCode parameter, after the underlying cause of the detected error has been removed. This behavior is designed as a detected error reset.</p> <p>NOTE: This function is only active on a signal change from FALSE to TRUE.</p>


Output Parameters

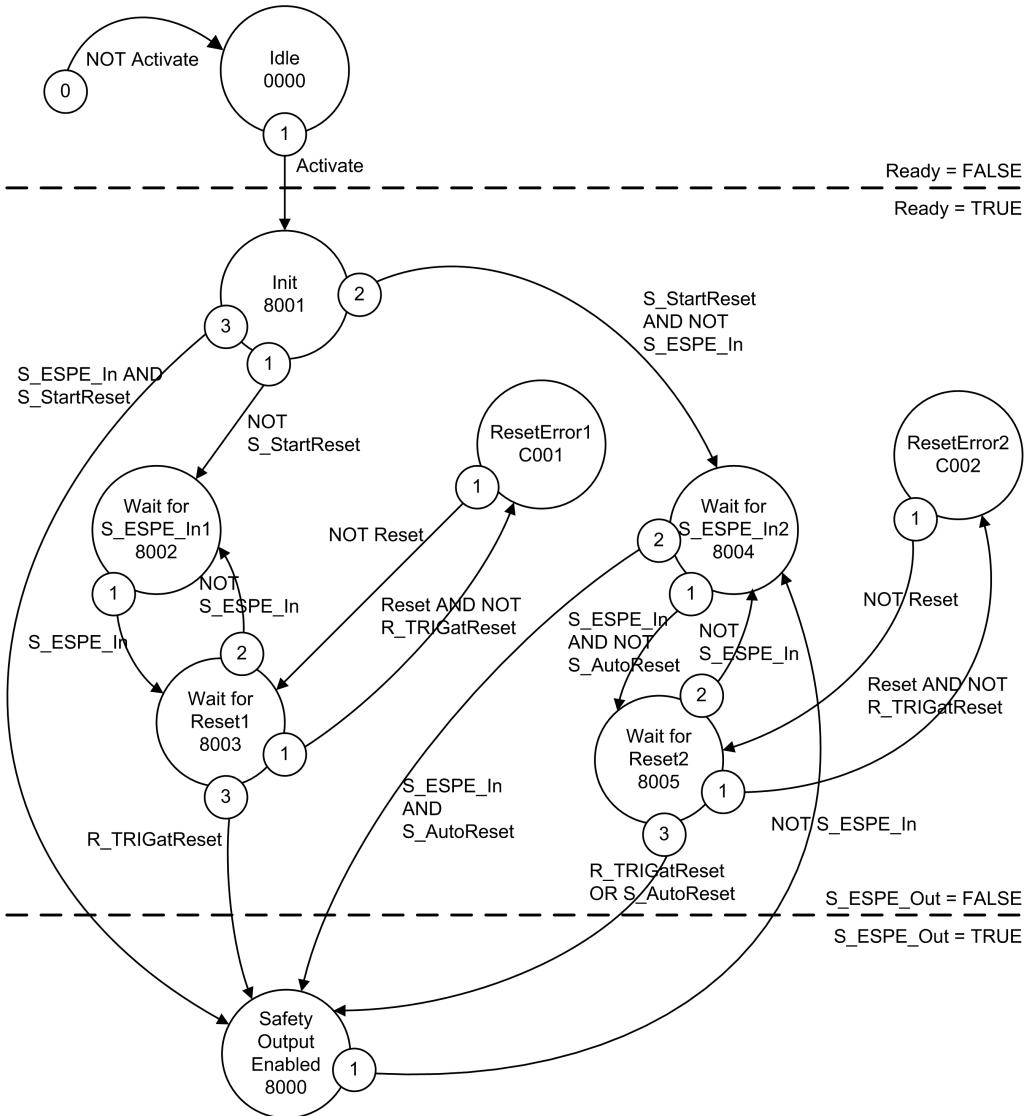
Parameter	Data type	Init Value	Meaning
Ready	BOOL	FALSE	<ul style="list-style-type: none"> TRUE indicates that the function block is activated and the output results are valid (same as the POWER LED of a safety relay). FALSE indicates the function block is not active and the program is not executed. <p>NOTE: This parameter can be useful in debug mode or to activate/deactivate additional function blocks, as well as for further processing in the functional program.</p>
S_ESPE_Out	BOOL	FALSE	<p>A safety related output that indicates:</p> <ul style="list-style-type: none"> FALSE: Safety output disabled.


Parameter	Data type	Init Value	Meaning
			<ul style="list-style-type: none"> • TRUE: Safety output enabled.
Error	BOOL	FALSE	Function block detected error message.
DiagCode	WORD	16#0000	Function block diagnostic message.

Typical Timing Diagrams


S_StartReset = FALSE; S_AutoReset = FALSE

`S_StartReset = TRUE; S_AutoReset = FALSE`



`S_StartReset = FALSE; S_AutoReset = TRUE`

State Diagram

The following diagram describes the state transitions of the S_ESPE function block:

Source: PLCopen - Technical Committee 5, Safety Software, Technical Specification, Part 1: Concepts and Function Blocks, Version 1.0.

NOTE: The transition to the Idle state from any other state, occurring because Activate = FALSE, is not depicted. Such a transition has the highest priority (0).

Error Detection

The function block detects a static TRUE signal at `Reset` input.

Detected Error Management

`S_ESPE_Out` is set to an initial value of FALSE.

If a static TRUE signal is received at the `Reset` input, the `DiagCode` output indicates the relevant detected error code and the `Error` output is set to TRUE.

To leave the detected error state, set `Reset` input to FALSE.

When returning a detected error message, the `DiagCode` parameter can present one of the following detected error values

DiagCode	State Name	State Description and Output Settings
C001	Reset Error 1	Reset signal is true while waiting for <code>S_ESPE_In</code> = TRUE: <ul style="list-style-type: none"> <code>S_ESPE_Out</code> = FALSE <code>Error</code> = TRUE
C002	Reset Error 2	Reset signal is true while waiting for <code>S_ESPE_In</code> = TRUE: <ul style="list-style-type: none"> <code>S_ESPE_Out</code> = FALSE <code>Error</code> = TRUE

Diagnostic Codes Management

When returning a status message, the `Error` parameter is set to FALSE, and the `DiagCode` parameter displays one of the following hexadecimal values:

DiagCode	State Name	State Description and Output Settings
0	IDLE	The function block is not active (initial state): <ul style="list-style-type: none"> <code>S_ESPOut</code> = FALSE <code>Error</code> = FALSE
8001	INIT	Activate is TRUE. The function block was enabled. Check if <code>S_StartReset</code> needs to be set: <ul style="list-style-type: none"> <code>S_ESPOut</code> = FALSE <code>Error</code> = FALSE
8002	Wait for <code>S_ESPE_In</code> 1	Activate is TRUE. Check if <code>Reset</code> is FALSE and wait for <code>S_ESPE_In</code> = TRUE: <ul style="list-style-type: none"> <code>S_ESPOut</code> = FALSE <code>Error</code> = FALSE

DiagCode	State Name	State Description and Output Settings
		<ul style="list-style-type: none"> • S_ESPOut = FALSE • Error = FALSE
8003	Wait for Reset 1	Activate is TRUE. Wait for rising trigger of Reset: <ul style="list-style-type: none"> • S_ESPOut = FALSE • Error = FALSE
8004	Wait for S_ESPE_In 2	Activate is TRUE. Safety demand detected. Check if Reset is FALSE and wait for S_ESPE_In = TRUE: <ul style="list-style-type: none"> • S_ESPOut = FALSE • Error = FALSE
8005	Wait for Reset 2	Activate is TRUE. S_ESPE_In = TRUE. Check for S_AutoReset or wait for rising trigger of Reset: <ul style="list-style-type: none"> • S_ESPOut = FALSE • Error = FALSE
8000	Safety Output Enabled	Activate is TRUE. S_ESPE_In = TRUE. Functional mode with S_ESPE_Out = TRUE: <ul style="list-style-type: none"> • S_ESPOut = TRUE • Error = FALSE

S_GUARD_LOCKING: Guard Lock Control

What's in This Chapter

Description	95
-------------------	----

Introduction

This chapter describes the S_GUARD_LOCKING block.

Description

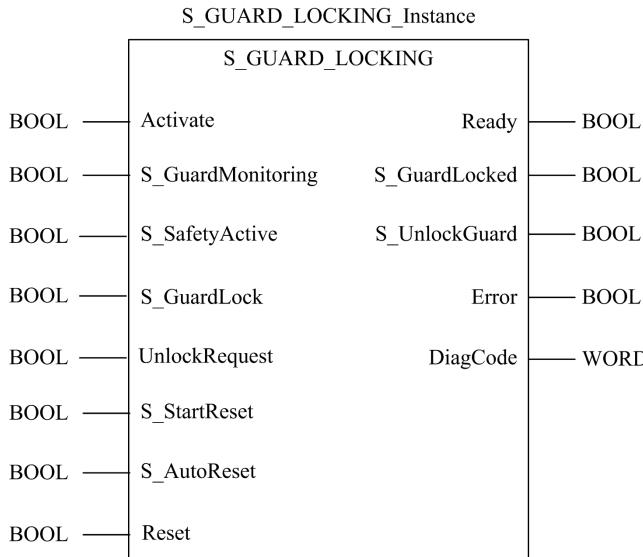
Function Description

Use the S_GUARD_LOCKING function with a mechanical guard lock switch that restricts access to a secured, hazardous area. The function controls a the guard lock and monitors the position of the guard and the lock.

When a request is made to gain access to the secured hazardous area, the guard should be unlocked only if the hazardous area is in a safe state.

The guard can be locked if the guard is closed. The secured equipment should be started only when the guard is closed and the guard is locked. The function detects an open guard or unlocked guard in the event of a safety-critical situation.

WARNING


RISK OF UNINTENDED OPERATION

Activate the S_StartReset and S_AutoReset inputs only after you verify that no hazardous situation can occur if the system is started.

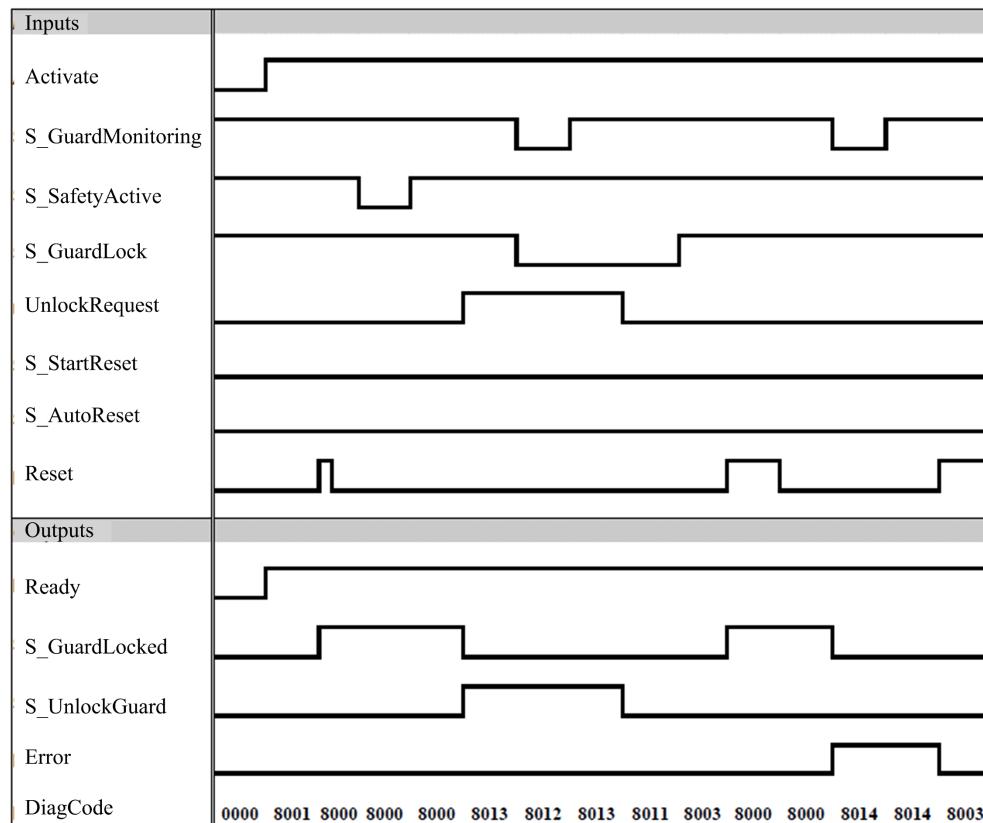
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Representation in FBD

Representation

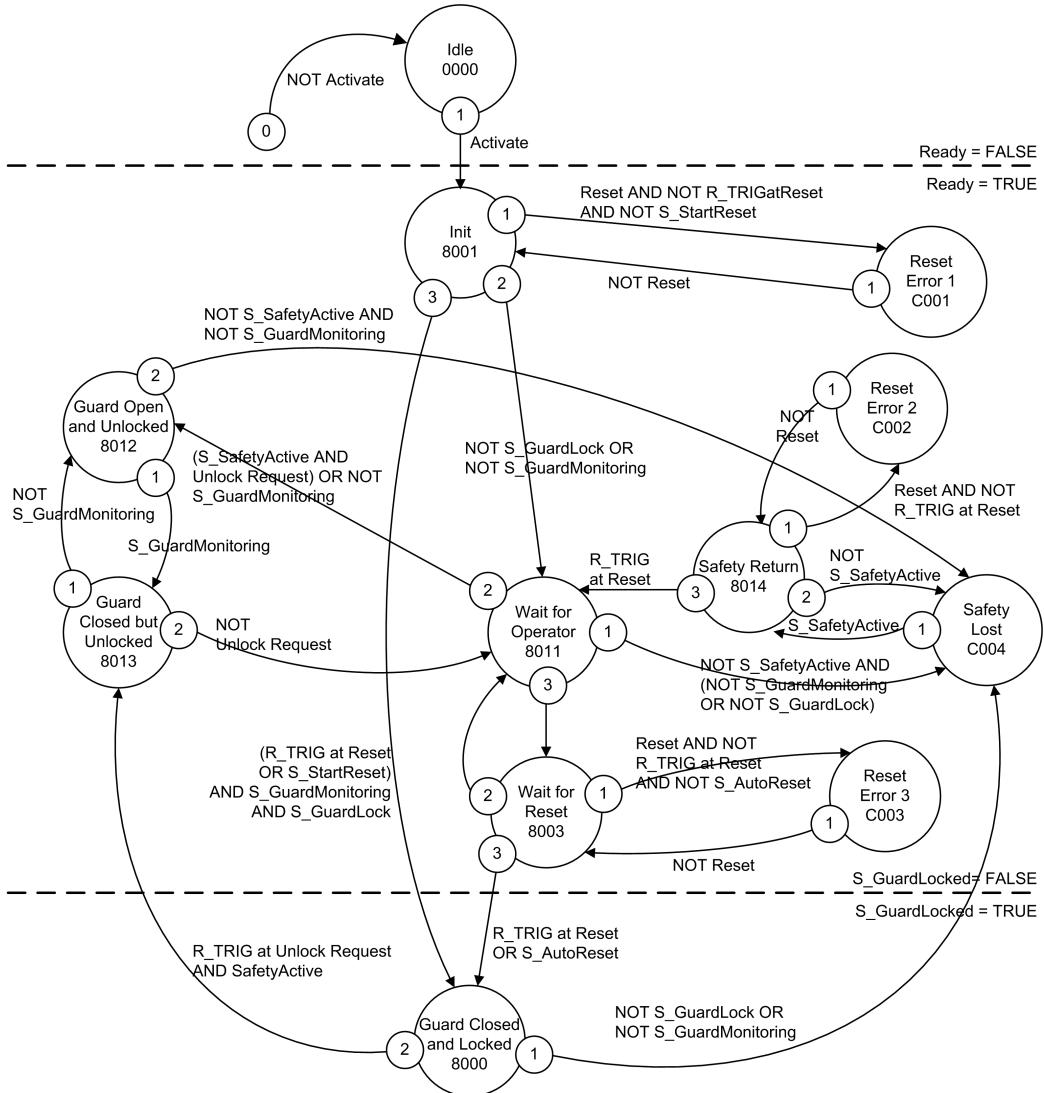
Input Parameters

Parameter	Data type	Init Value	Meaning
Activate	BOOL	FALSE	<p>The variable or constant value indicating activation state of the function block. This parameter can be connected to the variable, which represents the status (Active or Not Active) of the relevant safety device. This causes no irrelevant diagnostic information to be generated if a device is disabled:</p> <ul style="list-style-type: none"> When FALSE, all output variables are set to the initial values. Assign a static TRUE signal if no device is connected.
S_GuardMonitoring	BOOL	FALSE	<p>A variable input signal monitoring the guard interlocking:</p> <ul style="list-style-type: none"> FALSE: Guard open. TRUE: Guard closed.
S_SafetyActive	BOOL	FALSE	<p>A variable input signal indicating the status of the hazardous area based on speed monitoring or safe time off delay:</p> <ul style="list-style-type: none"> FALSE: Equipment in non-safe state.


Parameter	Data type	Init Value	Meaning
			<ul style="list-style-type: none"> • TRUE: Equipment is safe state.
S_GuardLock	BOOL	FALSE	<p>A variable input signal indicating the status of the mechanical guard locking:</p> <ul style="list-style-type: none"> • FALSE: Guard is not locked. • TRUE: Guard is locked.
UnlockRequest	BOOL	FALSE	<p>A variable input signaling operator intervention, i.e., the request to unlock the mechanical guard lock:</p> <ul style="list-style-type: none"> • FALSE: No request made. • TRUE: A request has been made.
S_StartReset	BOOL	FALSE	<p>A variable or constant value that indicates:</p> <ul style="list-style-type: none"> • FALSE: Manual reset when system is started (warm or cold). • TRUE: Automatic reset when system is started (warm or cold). <p>NOTE: Activate this function only after you have confirmed that no hazard can occur at the start of the PES. Use of the Automatic Circuit Reset feature of the function blocks requires implementation of other system or application measures to guard against unexpected (or unintended) start-up.</p>
S_AutoReset	BOOL	FALSE	<p>A variable or constant value indicating the state of the auto reset function:</p> <ul style="list-style-type: none"> • FALSE: Manual reset when emergency stop button is released. • TRUE: Automatic reset when emergency stop button is released <p>NOTE: Activate this function only after you have confirmed that no hazard can occur at the start of the system. Use of the Automatic Circuit Reset feature of the function blocks requires implementation of other system or application measures to guard against unexpected (or unintended) start-up.</p>
Reset	BOOL	FALSE	<p>The variable value indicating reset of the state machine, coupled with detected error and status messages as indicated in the <code>DiagCode</code> parameter, after the underlying cause of the detected error has been removed. This behavior is designed as a detected error reset.</p> <p>NOTE: This function is only active on a signal change from FALSE to TRUE.</p>

Output Parameters

Parameter	Data type	Init Value	Meaning
Ready	BOOL	FALSE	<ul style="list-style-type: none"> • TRUE indicates that the function block is activated and the output results are valid (same as the POWER LED of a safety relay). • FALSE indicates the function block is not active and the program is not executed. <p>NOTE: This parameter can be useful in debug mode or to activate/deactivate additional function blocks, as well as for further processing in the functional program.</p>
S_GuardLocked	BOOL	FALSE	<p>State of the mechanical guard lock switch that restricts access to a secured, hazardous area:</p> <ul style="list-style-type: none"> • FALSE: No safe state. • TRUE: Safe state.
S_UnlockGuard	BOOL	FALSE	<p>A signal to unlock the guard:</p> <ul style="list-style-type: none"> • FALSE: Close guard. • TRUE: Unlock the guard.
Error	BOOL	FALSE	Function block detected error message.
DiagCode	WORD	16#0000	Function block diagnostic message.


Typical Timing Diagrams

S_GUARD_LOCKING

Safety Diagram

The following diagram describes the state transitions of the S_GUARD_LOCKING function block:

Source: PLcopen - Technical Committee 5, Safety Software, Technical Specification, Part 1: Concepts and Function Blocks, Version 1.0.

NOTE: The transition to the Idle state from any other state, occurring because Activate = FALSE, is not depicted. Such a transition has the highest priority (0).

Error Detection

The function block detects a static TRUE signal at `Reset` input. Errors are detected at the guard switches.

Detected Error Management

In the event an error is detected

- The `S_GuardLocked` and `S_UnlockGuard` outputs are set to FALSE.
- The `DiagCode` output indicates the relevant detected error code.
- The `Error` output is set to TRUE.

Each detected error is acknowledged by a rising trigger at the `Reset` input.

When returning a detected error message, the `DiagCode` parameter can present one of the following detected error values

DiagCode	State Name	State Description and Output Settings
C001	Reset Error 1	Static <code>Reset</code> detected in state 8001: <ul style="list-style-type: none">• <code>S_GuardLocked</code> = FALSE• <code>S_UnlockGuard</code> = FALSE• <code>Error</code> = TRUE
C002	Reset Error 2	Static <code>Reset</code> detected in state C004: <ul style="list-style-type: none">• <code>S_GuardLocked</code> = FALSE• <code>S_UnlockGuard</code> = FALSE• <code>Error</code> = TRUE
C003	Reset Error 3	Static <code>Reset</code> detected in state 8011: <ul style="list-style-type: none">• <code>S_GuardLocked</code> = FALSE• <code>S_UnlockGuard</code> = FALSE• <code>Error</code> = TRUE
C004	Safety Lost	Safety lost, guard opened or guard unlocked: <ul style="list-style-type: none">• <code>S_GuardLocked</code> = FALSE• <code>S_UnlockGuard</code> = FALSE• <code>Error</code> = TRUE

Diagnostic Codes Management

When returning a status message, the `Error` parameter is set to FALSE, and the `DiagCode` parameter displays one of the following hexadecimal values:

DiagCode	State Name	State Description and Output Settings
0	IDLE	The function block is not active (initial state): <ul style="list-style-type: none"> • <code>S_GuardLocked</code> = FALSE • <code>S_UnlockGuard</code> = FALSE • <code>Error</code> = FALSE
8000	Guard Closed and Locked	Guard is locked: <ul style="list-style-type: none"> • <code>S_GuardLocked</code> = FALSE • <code>S_UnlockGuard</code> = FALSE • <code>Error</code> = FALSE
8001	INIT	Activate is TRUE. The function block was enabled: <ul style="list-style-type: none"> • <code>S_GuardLocked</code> = FALSE • <code>S_UnlockGuard</code> = FALSE • <code>Error</code> = FALSE
8003	Wait for Reset 1	Door is closed and locked, now waiting for operator <code>Reset</code> : <ul style="list-style-type: none"> • <code>S_GuardLocked</code> = FALSE • <code>S_UnlockGuard</code> = FALSE • <code>Error</code> = FALSE
8011	Wait for Operator	Waiting for operator to either unlock request or reset: <ul style="list-style-type: none"> • <code>S_GuardLocked</code> = FALSE • <code>S_UnlockGuard</code> = FALSE • <code>Error</code> = FALSE
8012	Guard Open and Unlocked	Lock is released and guard is open: <ul style="list-style-type: none"> • <code>S_GuardLocked</code> = TRUE • <code>S_UnlockGuard</code> = FALSE • <code>Error</code> = FALSE
8013	Guard Closed but Unlocked	Lock is released but guard is closed: <ul style="list-style-type: none"> • <code>S_GuardLocked</code> = FALSE • <code>S_UnlockGuard</code> = TRUE • <code>Error</code> = FALSE
8014	Safety Return	Return of <code>S_SafetyActive</code> signal, now waiting for operator acknowledge: <ul style="list-style-type: none"> • <code>S_GuardLocked</code> = FALSE • <code>S_UnlockGuard</code> = FALSE • <code>Error</code> = FALSE

S_GUARD_MONITORING: Guard Lock Monitoring

What's in This Chapter

Description	103
-------------------	-----

Introduction

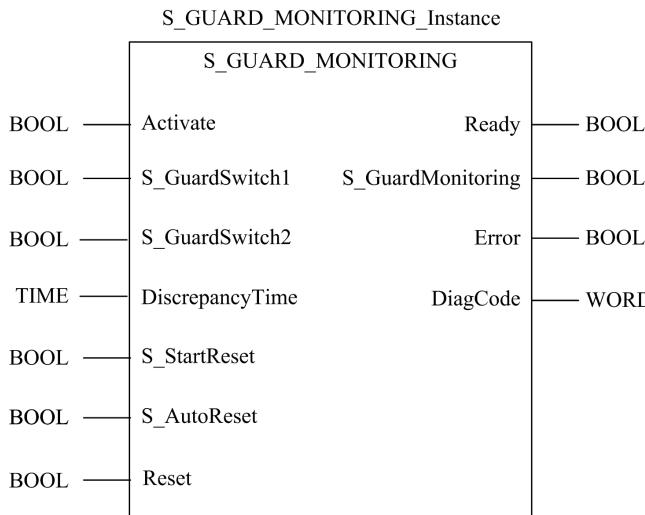
This chapter describes the S_GUARD_MONITORING block.

Description

Function Description

Use the S_GUARD_MONITORING function block to monitor the status of a safe guard lock with two-state interlocking in your application. This block performs only monitoring, without guard locking.

WARNING


RISK OF UNINTENDED OPERATION

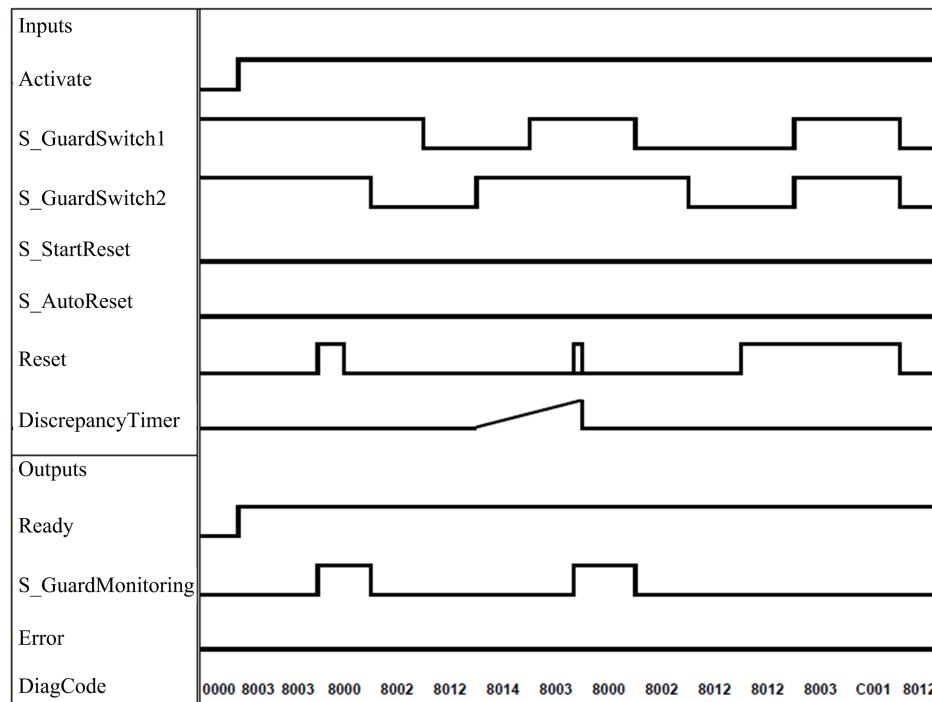
Activate the S_StartReset and S_AutoReset inputs only after you verify that no hazardous situation can occur if the system is started.

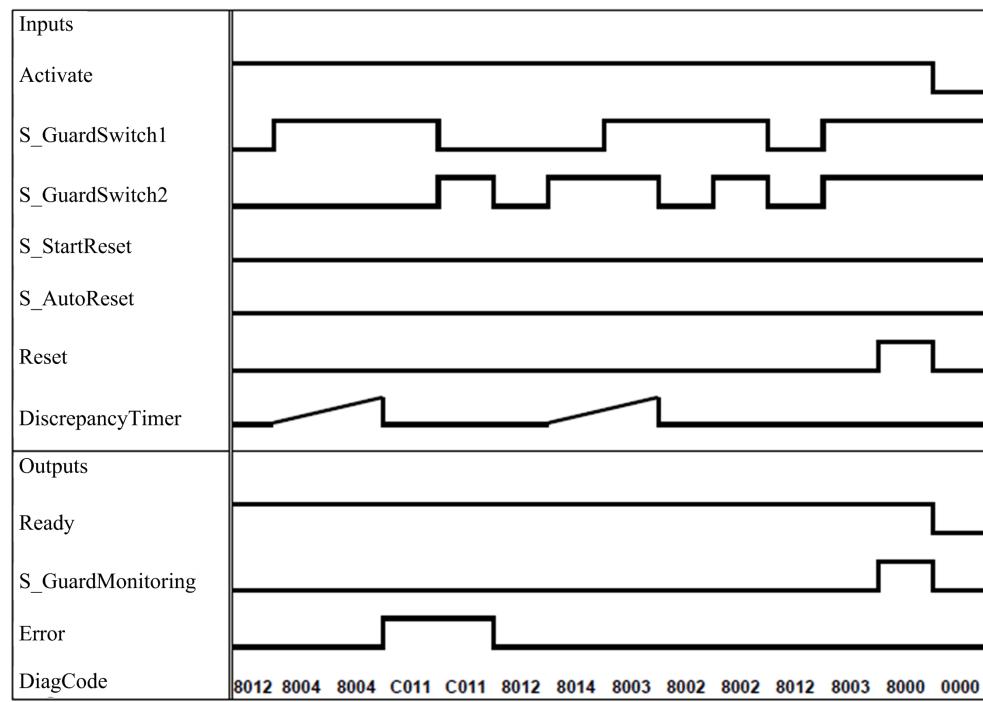
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Representation in FBD

Representation

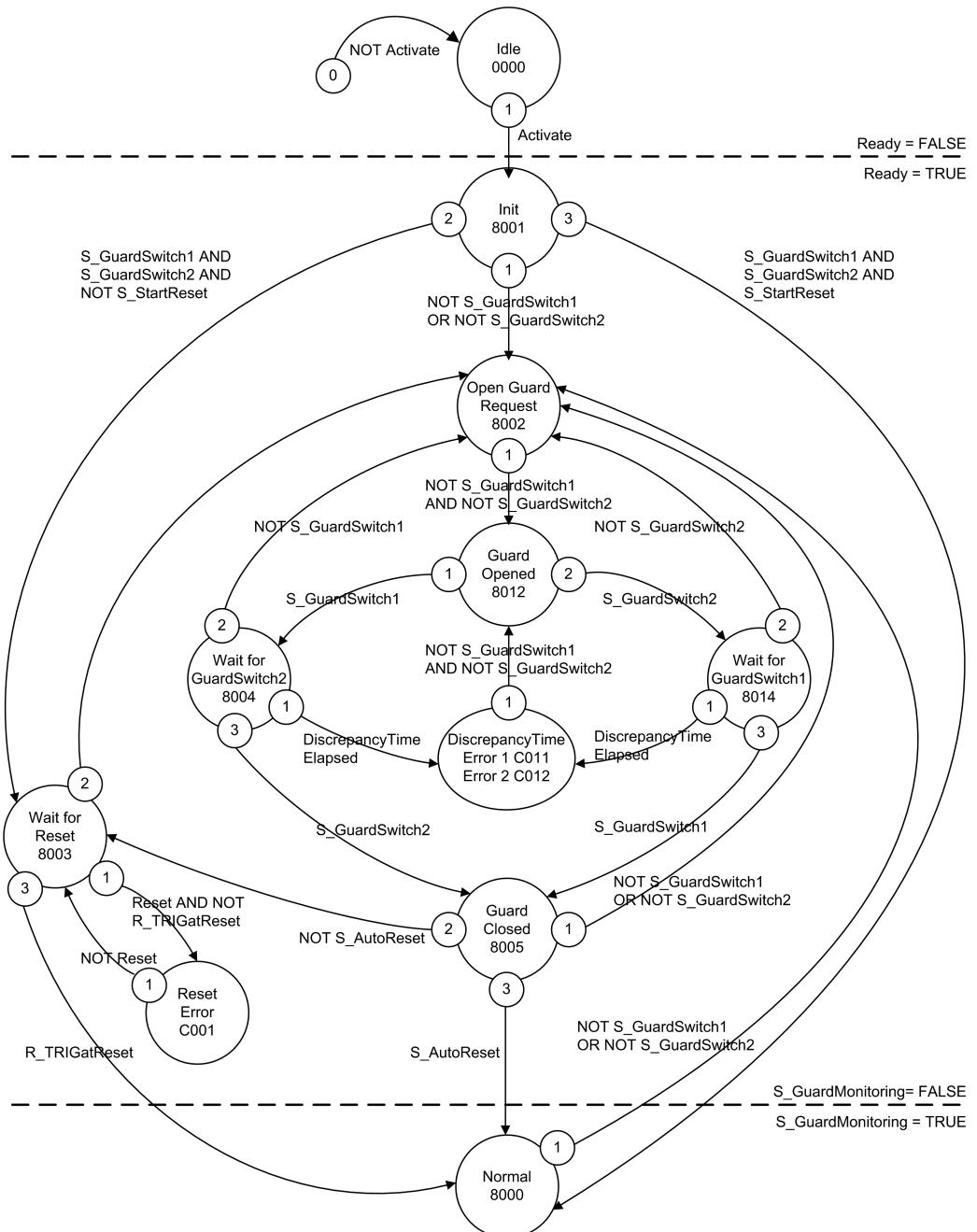
Input Parameters


Parameter	Data type	Init Value	Meaning
Activate	BOOL	FALSE	<p>The variable or constant value indicating activation state of the function block. This parameter can be connected to the variable, which represents the status (Active or Not Active) of the relevant safety device. This causes no irrelevant diagnostic information to be generated if a device is disabled:</p> <ul style="list-style-type: none"> When FALSE, all output variables are set to the initial values. Assign a static TRUE signal if no device is connected.
S_GuardSwitch1	BOOL	FALSE	<p>A variable input signal monitoring the status of guard switch 1:</p> <ul style="list-style-type: none"> FALSE: Guard open. TRUE: Guard closed.
S_GuardSwitch2	BOOL	FALSE	<p>A variable input signal monitoring the status of guard switch 2:</p> <ul style="list-style-type: none"> FALSE: Guard open. TRUE: Guard closed.


Parameter	Data type	Init Value	Meaning
DiscrepancyTime	TIME	T#0 ms	A configurable constant value for the monitored synchronous time between S_GuardSwitch1 and S_GuardSwitch2.
S_StartReset	BOOL	FALSE	<p>A variable or constant value that indicates:</p> <ul style="list-style-type: none"> • FALSE: Manual reset when system is started (warm or cold). • TRUE: Automatic reset when system is started (warm or cold). <p>NOTE: Activate this function only after you have confirmed that no hazard can occur at the start of the PES. Use of the Automatic Circuit Reset feature of the function blocks requires implementation of other system or application measures to guard against unexpected (or unintended) start-up.</p>
S_AutoReset	BOOL	FALSE	<p>A variable or constant value indicating the state of the auto reset function:</p> <ul style="list-style-type: none"> • FALSE: Manual reset when emergency stop button is released. • TRUE: Automatic reset when emergency stop button is released <p>NOTE: Activate this function only after you have confirmed that no hazard can occur at the start of the system. Use of the Automatic Circuit Reset feature of the function blocks requires implementation of other system or application measures to guard against unexpected (or unintended) start-up.</p>
Reset	BOOL	FALSE	<p>The variable value indicating reset of the state machine, coupled with detected error and status messages as indicated in the DiagCode parameter, after the underlying cause of the detected error has been removed. This behavior is designed as a detected error reset.</p> <p>NOTE: This function is only active on a signal change from FALSE to TRUE.</p>

Output Parameters

Parameter	Data type	Init Value	Meaning
Ready	BOOL	FALSE	<ul style="list-style-type: none"> • TRUE indicates that the function block is activated and the output results are valid (same as the POWER LED of a safety relay). • FALSE indicates the function block is not active and the program is not executed. <p>NOTE: This parameter can be useful in debug mode or to activate/deactivate additional function blocks, as well as for further processing in the functional program.</p>
S_GuardMonitoring	BOOL	FALSE	<p>State of the interlocking guard:</p> <ul style="list-style-type: none"> • FALSE: Guard is not active. • TRUE: Guard is active: <ul style="list-style-type: none"> ◦ S_GuardSwitch1 and S_GuardSwitch2 are TRUE, no detected error and acknowledgment. Guard is active ◦ Error parameter is FALSE
Error	BOOL	FALSE	Function block detected error message.
DiagCode	WORD	16#0000	Function block diagnostic message.


Typical Timing Diagrams

State Diagram

The following diagram describes the state transitions of the S_GUARD_MONITORING function block:

Source: PLCopen - Technical Committee 5, Safety Software, Technical Specification, Part 1: Concepts and Function Blocks, Version 1.0.

Detected Error Management

In the event an error is detected:

- The `S_GuardMonitoring` output is set to FALSE.
- The `DiagCode` output indicates the relevant error code.
- The `Error` output is set to TRUE.

To leave a detected error state, take the following steps:

- To leave the Reset Error state, set the `Reset` input to FALSE.
- To leave a Discrepancy Time Error state, set both the `S_GuardSwitch1` and `S_GuardSwitch2` inputs to FALSE.

If the `S_GuardSwitch1` and `S_GuardSwitch2` inputs are bridged, no error is detected.

When returning a detected error message, the `DiagCode` parameter can present one of the following detected error values

DiagCode	State Name	State Description and Output Settings
C001	Reset Error	Static <code>Reset</code> detected in state 8003: <ul style="list-style-type: none"> • <code>S_GuardMonitoring</code> = FALSE • <code>Error</code> = TRUE
C011	Discrepancy Time Error 1	Static <code>DiscrepancyTimer</code> elapsed in state 8004: <ul style="list-style-type: none"> • <code>S_GuardMonitoring</code> = FALSE • <code>Error</code> = TRUE
C012	Discrepancy Time Error 2	Static <code>DiscrepancyTimer</code> elapsed in state 8014: <ul style="list-style-type: none"> • <code>S_GuardMonitoring</code> = FALSE • <code>Error</code> = TRUE

Diagnostic Codes Management

When returning a status message, the `Error` parameter is set to FALSE, and the `DiagCode` parameter displays one of the following hexadecimal values:

DiagCode	State Name	State Description and Output Settings
0	IDLE	The function block is not active (initial state): <ul style="list-style-type: none"> • <code>S_GuardMonitoring</code> = FALSE • <code>Error</code> = FALSE
8000	Normal	Safety guard closed and safe state acknowledged: <ul style="list-style-type: none"> • <code>S_GuardMonitoring</code> = TRUE

DiagCode	State Name	State Description and Output Settings
		<ul style="list-style-type: none"> • <code>Error = FALSE</code>
8001	INIT	Activate is TRUE. The function block was enabled: <ul style="list-style-type: none"> • <code>S_GuardMonitoring = FALSE</code> • <code>Error = FALSE</code>
8002	Open Guard Request	Complete switching sequence required: <ul style="list-style-type: none"> • <code>S_GuardMonitoring = FALSE</code> • <code>Error = FALSE</code>
8003	Wait for Reset	Waiting for rising trigger at <code>Reset</code> : <ul style="list-style-type: none"> • <code>S_GuardMonitoring = FALSE</code> • <code>Error = FALSE</code>
8012	Guard Opened	Guard completely opened: <ul style="list-style-type: none"> • <code>S_GuardMonitoring = FALSE</code> • <code>Error = FALSE</code>
8004	Wait for GuardSwitch2	<code>S_GuardWitch1</code> has been switched to TRUE; waiting for <code>S_GuardSwitch2</code> ; <code>DiscrepancyTimer</code> started: <ul style="list-style-type: none"> • <code>S_GuardMonitoring = FALSE</code> • <code>Error = FALSE</code>
8014	Wait for GuardSwitch1	<code>S_GuardWitch2</code> has been switched to TRUE; waiting for <code>S_GuardSwitch1</code> ; <code>DiscrepancyTimer</code> started: <ul style="list-style-type: none"> • <code>S_GuardMonitoring = FALSE</code> • <code>Error = FALSE</code>
8005	Guard Closed	Guard closed; waiting for <code>Reset</code> if <code>S_AutoReset = FALSE</code> : <ul style="list-style-type: none"> • <code>S_GuardMonitoring = FALSE</code> • <code>Error = FALSE</code>

S_MODE_SELECTOR: Safety Mode Switch

What's in This Chapter

Description	113
-------------------	-----

Introduction

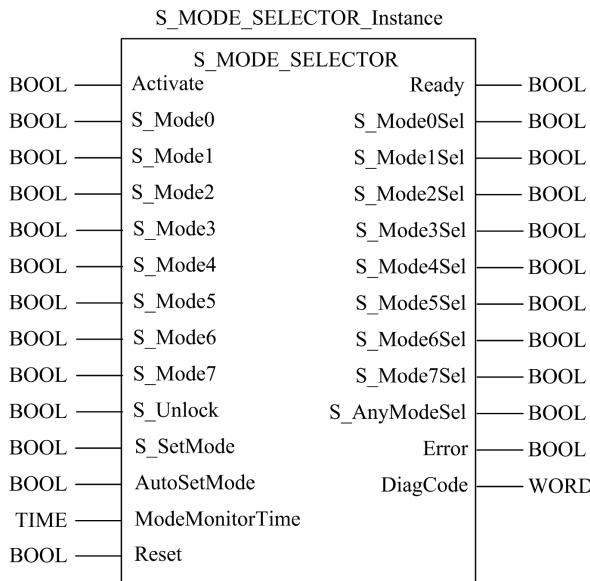
This chapter describes the S_MODE_SELECTOR block.

Description

Function Description

Use the S_MODE_SELECTOR function block to support the function of a mode selector switch with up to eight signals in an application.

Connect a mode selector switch to the S_Mode0 to S_Mode7 inputs of the function block to specify an operating mode for a defined safety level, by issuing a single TRUE input signal.


Configure your application to execute the specified safety level (for example, service mode, cleaning mode, jogging mode, setup mode or automatic mode).

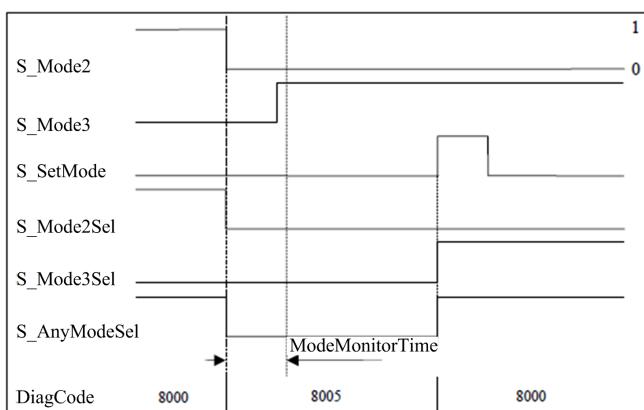
Depending upon the mechanical properties of the mode selector switch, it is possible that more than one signal – or no signal – is set to TRUE when you change the mode selector switch setting. In this case, configure the ModeMonitorTime parameter to create a switching time span during which these conditions are permitted. Outside this permitted time span, the function block detects these conditions as errors.

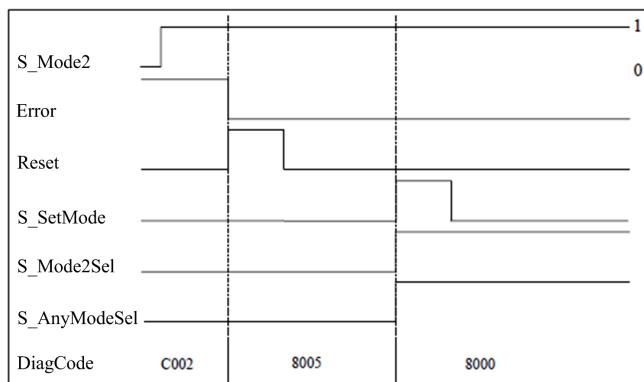
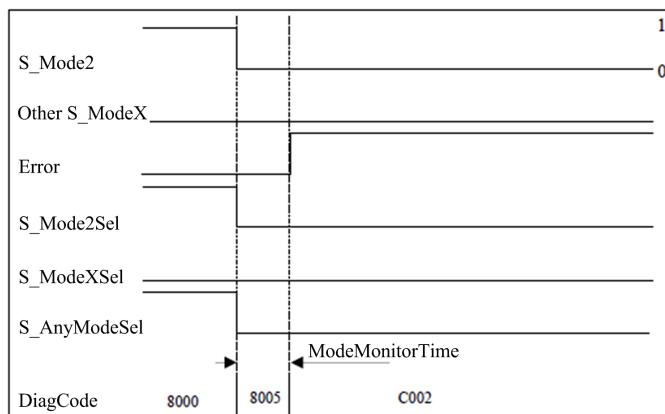
The signal states S_Mode0 to S_Mode7 are output at the corresponding S_Mode0Sel to S_Mode7Sel output parameters, either automatically or after a manually issued operator acknowledgment signal.

Representation in FBD

Representation

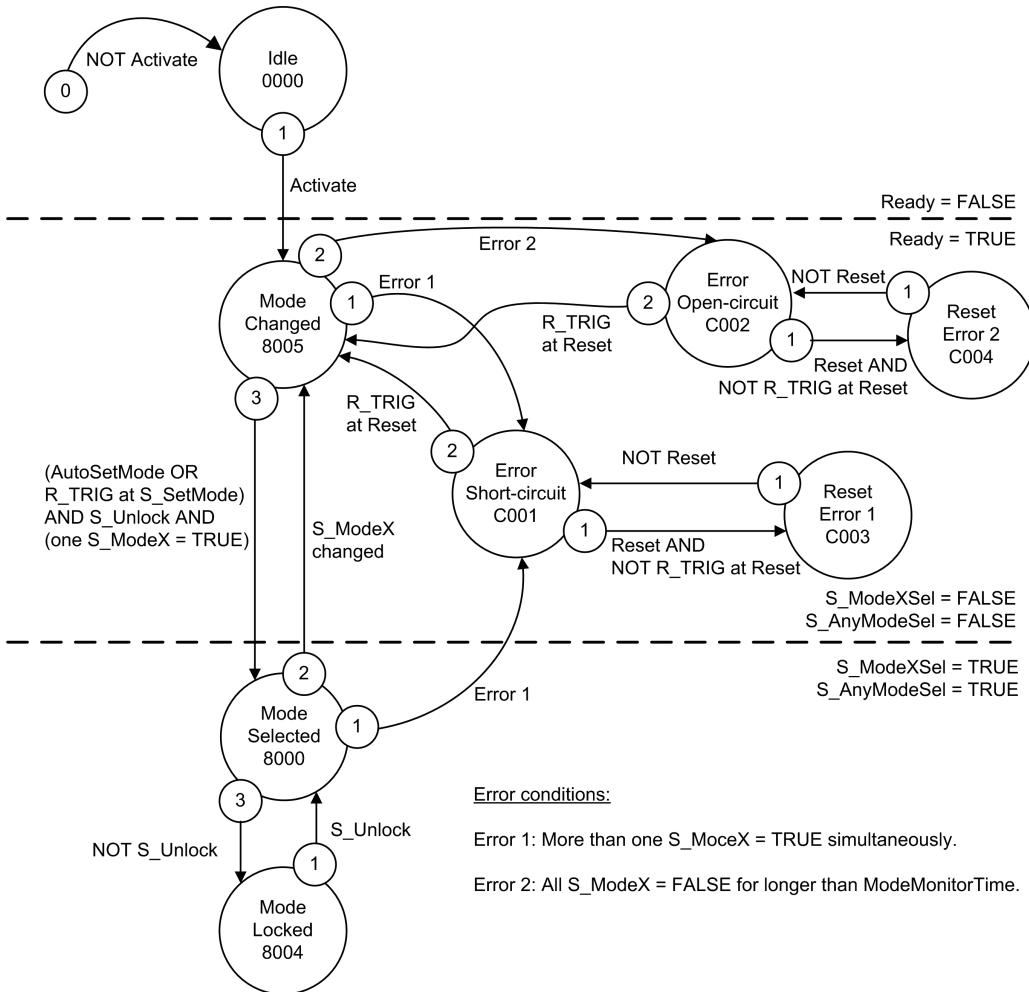
Input Parameters


Parameter	Data type	Init Value	Meaning
Activate	BOOL	FALSE	<p>The variable or constant value indicating activation state of the function block. This parameter can be connected to the variable, which represents the status (Active or Not Active) of the relevant safety device. This causes no irrelevant diagnostic information to be generated if a device is disabled:</p> <ul style="list-style-type: none"> When FALSE, all output variables are set to the initial values. Assign a static TRUE signal if no device is connected.
S_Mode0 ... S_Mode7	BOOL	FALSE	<p>A variable or constant value for the input assigned to a specific position, 0...7, on the mode selector switch:</p> <ul style="list-style-type: none"> FALSE: The associated mode (0...7) is not selected. TRUE: the associated mode (0...7) is selected.
S_Unlock	BOOL	FALSE	A variable or constant input signal that locks and unlocks the selected mode:



Parameter	Data type	Init Value	Meaning
			<ul style="list-style-type: none"> • FALSE: The currently active <code>S_ModeXSel</code> output is locked. A change to any other <code>S_ModeX</code> input does not lead to a change in the active <code>S_ModeXSel</code> output even in the event of a rising edge of <code>S_SetMode</code>. • TRUE: The currently active <code>S_ModeXSel</code> output is not locked. A change to a different <code>S_ModeXSel</code> output is possible.
<code>S_SetMode</code>	BOOL	FALSE	<p>A variable that, when set to TRUE by the operator, acknowledges the change in the selected mode.</p> <p>NOTE: When a mode change occurs by setting an <code>S_ModeX</code> = TRUE, both <code>S_AnyModeSel</code> and the associated <code>S_ModeXSel</code> = FALSE. Only a rising <code>SetMode</code> trigger causes the associated <code>S_ModeXSel</code> = TRUE.</p>
<code>AutoSetMode</code>	BOOL	FALSE	<p>A constant value that sets the acknowledgment mode:</p> <ul style="list-style-type: none"> • FALSE: The operator is required to manually acknowledge a change in mode via <code>S_SetMode</code>. • TRUE: A valid change of the <code>S_ModeX</code> input to a different <code>S_ModeX</code> selection automatically leads to a change in <code>S_ModeXSel</code> without operator acknowledgment via <code>SetMode</code> (provided that the <code>S_ModeXSel</code> setting is not locked via <code>S_Unlock</code>).
<code>ModeMonitorTime</code>	TIME	FALSE	<p>A constant value indicating the maximum permissible time for changing the selection input.</p>
<code>Reset</code>	BOOL	FALSE	<p>The variable value indicating reset of the state machine, coupled with detected error and status messages as indicated in the <code>DiagCode</code> parameter, after the underlying cause of the detected error has been removed. This behavior is designed as a detected error reset.</p> <p>NOTE: This function is only active on a signal change from FALSE to TRUE.</p>

Output Parameters

Parameter	Data type	Init Value	Meaning
Ready	BOOL	FALSE	<ul style="list-style-type: none"> TRUE indicates that the function block is activated and the output results are valid (same as the POWER LED of a safety relay). FALSE indicates the function block is not active and the program is not executed. <p>NOTE: This parameter can be useful in debug mode or to activate/deactivate additional function blocks, as well as for further processing in the functional program.</p>
S_Mode0 ... S_Mode7	BOOL	FALSE	<p>Indicates the selected and acknowledged status of the specified mode (0...7):</p> <ul style="list-style-type: none"> FALSE: The specified mode (0...7) is not selected or is not active. TRUE: The specified mode (0...7) is selected and active
S_AnyModeSel	BOOL	FALSE	<p>Indicates if any mode (S_Mode0...S_Mode7) is selected:</p> <ul style="list-style-type: none"> FALSE: No S_ModeX is selected. TRUE: One of the eight modes (S_Mode0...S_Mode7) is selected.
Error	BOOL	FALSE	Function block detected error message.
DiagCode	WORD	16#0000	Function block diagnostic message.


Typical Timing Diagrams

State Diagram

The following diagram describes the state transitions of the S_MODE_SELECTOR function block:

Source: PLCopen - Technical Committee 5, Safety Software, Technical Specification, Part 1: Concepts and Function Blocks, Version 1.0.

NOTE: The transition to the Idle state from any other state, occurring because Activate = FALSE, is not depicted. Such a transition has the highest priority (0).

Error Detection

The S_MODE_SELECTOR function block:

- Detects if no input mode is selected. This invalid condition is raised after the ModeMonitorTime has elapsed.
- Restarts with every falling trigger of an S_ModeX input.
- Enters the ModeChanged state on activation.

By contrast, the function block directly detects whether more than one S_ModeX input is simultaneously selected. A static Reset condition is detected when the function block is in either C001 or C002 error state.

Detected Error Management

If an error is detected:

- The S_ModeXSel and S_AnyModeSel outputs are set to their safe state (FALSE).
- The DiagCode output indicates the relevant detected error code and the Error output is set to TRUE.

Each detected error is acknowledged by means of the rising trigger of the Reset input. The function block changes from a detected error state to the ModeChanged state.

When returning a detected error message, the DiagCode parameter can present one of the following detected error values

DiagCode	State Name	State Description and Output Settings
C001	Error Short-circuit	<p>The function block detected that two or more S_ModeX are set to TRUE, indicating a possible cable short-circuit:</p> <ul style="list-style-type: none"> • S_AnyModeSel = FALSE • All S_ModeXSel = FALSE • Error = TRUE
C002	Error Open-circuit	<p>The function block detected that all S_ModeX are FALSE. The period following a falling S_ModeX trigger exceeds ModeMonitorTime, indicating a possible open-circuit of cables:</p> <ul style="list-style-type: none"> • S_AnyModeSel = FALSE • All S_ModeXSel = FALSE • Error = TRUE

DiagCode	State Name	State Description and Output Settings
C003	Reset Error 1	Static Reset signal detected in state C001: <ul style="list-style-type: none">S_AnyModeSel = FALSEAll S_ModeXSel = FALSEError = TRUE
C004	Reset Error 2	Static Reset signal detected in state C002: <ul style="list-style-type: none">S_AnyModeSel = FALSEAll S_ModeXSel = FALSEError = TRUE

Diagnostic Codes Management

When returning a status message, the `Error` parameter is set to FALSE, and the `DiagCode` parameter displays one of the following hexadecimal values:

DiagCode	State Name	State Description and Output Settings
0	IDLE	The function block is not active (initial state): <ul style="list-style-type: none">S_AnyModeSel = FALSES_ModeXSel = FALSEError = FALSE
8005	ModeChanged	State after activation or when S_ModeX has changed (unless locked) or after Reset of an error state: <ul style="list-style-type: none">S_AnyModeSel = FALSES_ModeXSel = FALSEError = FALSE
8000	ModeSelected	A valid mode is selected, but not locked: <ul style="list-style-type: none">S_AnyModeSel = TRUEThe selected S_ModeXSel = TRUE, all others are FALSE.Error = FALSE
8004	ModeLocked	A valid mode is selected and locked. <ul style="list-style-type: none">S_AnyModeSel = TRUEThe selected S_ModeXSel = TRUE, all others are FALSE.Error = FALSE

S_OUTCONTROL: Output Driver

What's in This Chapter

Description	121
-------------------	-----

Introduction

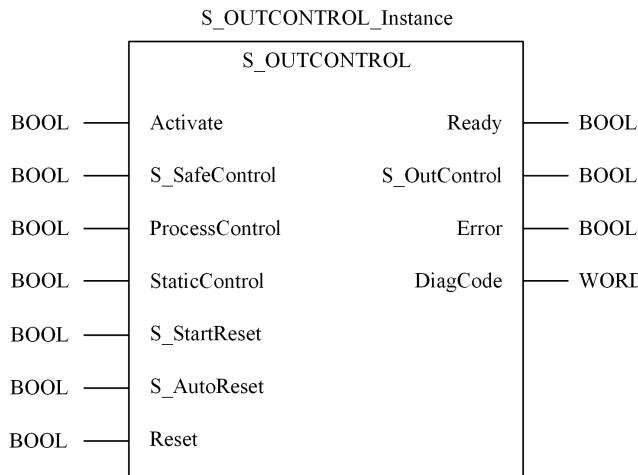
This chapter describes the S_OUTCONTROL block.

Description

Function Description

The S_OUTCONTROL function block is an output driver for a safety output. Use the S_OUTCONTROL function block to control the output based on signals from both the functional application (ProcessControl, to control the process) and the safety application (S_SafeControl, to control the safety function).

WARNING


RISK OF UNINTENDED OPERATION

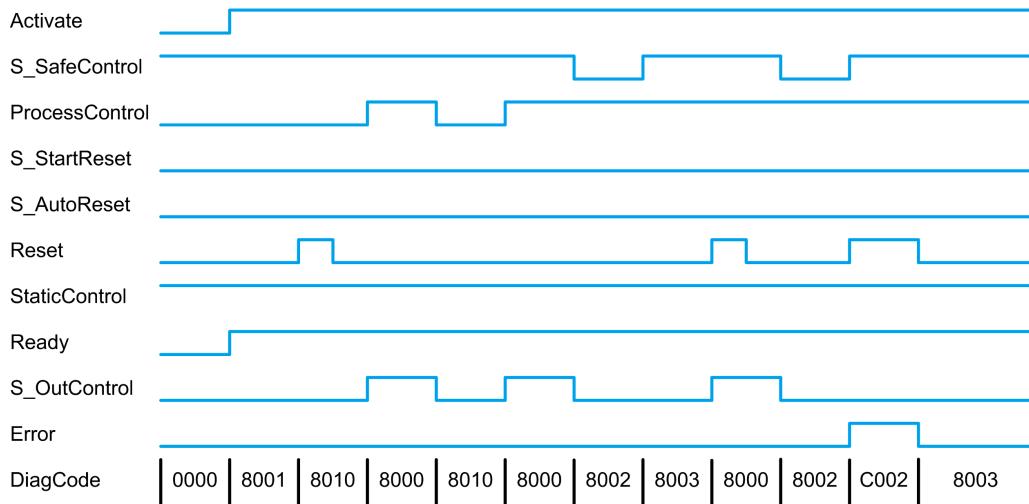
Activate the S_StartReset and S_AutoReset inputs only after you verify that no hazardous situation can occur if the system is started.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Representation in FBD

Representation

Input Parameters


Parameter	Data type	Init Value	Meaning
Activate	BOOL	FALSE	<p>The variable or constant value indicating activation state of the function block. This parameter can be connected to the variable, which represents the status (Active or Not Active) of the relevant safety device. This causes no irrelevant diagnostic information to be generated if a device is disabled:</p> <ul style="list-style-type: none"> When FALSE, all output variables are set to the initial values. Assign a static TRUE signal if no device is connected.
S_SafeControl	BOOL	FALSE	<p>A variable control signal of the preceding safety function block (from the safety library), indicating the state of the safety function:</p> <ul style="list-style-type: none"> FALSE: The preceding safety function blocks are in the safe state, and the associated safety processes and equipment are disabled. TRUE: The preceding safety function blocks enable safety control.
ProcessControl	BOOL	FALSE	A variable or constant input signal that from the functional (non-safety) application:

Parameter	Data type	Init Value	Meaning
			<ul style="list-style-type: none"> • FALSE: Request to set S_OutControl to FALSE. • TRUE: Request to set S_OutControl to TRUE.
S_StaticControl	BOOL	FALSE	<p>An optional constant value that indicates additional conditions exist for process control:</p> <ul style="list-style-type: none"> • FALSE: A dynamic change of the ProcessControl parameter (from FALSE to TRUE) is required after block activation or the safety function is triggered. • TRUE: No such dynamic change of the ProcessControl parameter is required.
S_StartReset	BOOL	FALSE	<p>A variable or constant value that indicates:</p> <ul style="list-style-type: none"> • FALSE: Manual reset when system is started (warm or cold). • TRUE: Automatic reset when system is started (warm or cold). <p>NOTE: Activate this function only after you have confirmed that no hazard can occur at the start of the PES. Use of the Automatic Circuit Reset feature of the function blocks requires implementation of other system or application measures to guard against unexpected (or unintended) start-up.</p>
S_AutoReset	BOOL	FALSE	<p>A variable or constant value indicating the state of the auto reset function:</p> <ul style="list-style-type: none"> • FALSE: Manual reset when emergency stop button is released. • TRUE: Automatic reset when emergency stop button is released <p>NOTE: Activate this function only after you have confirmed that no hazard can occur at the start of the system. Use of the Automatic Circuit Reset feature of the function blocks requires implementation of other system or application measures to guard against unexpected (or unintended) start-up.</p>
Reset	BOOL	FALSE	<p>The variable value indicating reset of the state machine, coupled with detected error and status messages as indicated in the DiagCode parameter, after the underlying cause of the detected error has been removed. This behavior is designed as a detected error reset.</p> <p>NOTE: This function is only active on a signal change from FALSE to TRUE.</p>

Output Parameters

Parameter	Data type	Init Value	Meaning
Ready	BOOL	FALSE	<ul style="list-style-type: none"> • TRUE indicates that the function block is activated and the output results are valid (same as the POWER LED of a safety relay). • FALSE indicates the function block is not active and the program is not executed. <p>NOTE: This parameter can be useful in debug mode or to activate/deactivate additional function blocks, as well as for further processing in the functional program.</p>
S_OutControl	BOOL	FALSE	Controls the connected actuator(s): <ul style="list-style-type: none"> • FALSE: Disable connected actuator(s). • TRUE: Enable connected actuator(s).
Error	BOOL	FALSE	Function block detected error message.
DiagCode	WORD	16#0000	Function block diagnostic message.

Typical Timing Diagrams

State Diagram

The following diagram describes the state transitions of the S_OUTCONTROL function block:

Source: PLCopen - Technical Committee 5, Safety Software, Technical Specification, Part 1: Concepts and Function Blocks, Version 1.0.

NOTE: The transition to the Idle state from any other state, occurring because Activate = FALSE, is not depicted. Such a transition has the highest priority (0).

Error Detection

The following conditions cause a transition to an error state:

- Invalid static Reset signal in the process.
- Invalid static ProcessControl signal.
- The ProcessControl and Reset parameters are mistakenly interconnected due to a programming error.

Detected Error Management

In the event an error is detected, the S_OutControl output is set to FALSE and remains in this safe state.

To leave the Reset Error, Init Error, or Lock Error state, set the Reset input to FALSE.

To leave the Control Error state, set the ProcessControl input to FALSE.

After transition of S_SafeControl to TRUE, the optional start-up inhibit can be reset by a rising edge at the Reset input. After block activation, the optional start-up inhibit can be reset by a rising edge at the Reset input.

When returning a detected error message, the DiagCode parameter can present one of the following detected error values

DiagCode	State Name	State Description and Output Settings
C001	Reset Error 1	Static Reset signal in state 8001: <ul style="list-style-type: none">• S_OutControl = FALSE• Error = TRUE
C002	Reset Error 2	Static Reset signal in state 8003: <ul style="list-style-type: none">• S_OutControl = FALSE• Error = TRUE
C010	Control Error	Static Reset signal in state 8010: <ul style="list-style-type: none">• S_OutControl = FALSE• Error = TRUE

DiagCode	State Name	State Description and Output Settings
C111	Init Error	Simultaneous rising trigger at <code>Reset</code> and <code>ProcessControl</code> in state 8001: <ul style="list-style-type: none">• <code>S_OutControl</code> = FALSE• <code>Error</code> = TRUE
C211	Lock Error	Simultaneous rising trigger at <code>Reset</code> and <code>ProcessControl</code> in state 8003: <ul style="list-style-type: none">• <code>S_OutControl</code> = FALSE• <code>Error</code> = TRUE

Diagnostic Codes Management

When returning a status message, the `Error` parameter is set to FALSE, and the `DiagCode` parameter displays one of the following hexadecimal values:

DiagCode	State Name	State Description and Output Settings
0	IDLE	The function block is not active (initial state): <ul style="list-style-type: none">• <code>S_OutControl</code> = FALSE• <code>Error</code> = FALSE
8001	Init	Activation has been detected by the function block, which is now active: <ul style="list-style-type: none">• <code>S_OutControl</code> = FALSE• <code>Error</code> = FALSE
8002	Safe	Triggered safety function: <ul style="list-style-type: none">• <code>S_OutControl</code> = TRUE• <code>Error</code> = FALSE
8003	Lock	Safety function start up inhibit is active. Reset required: <ul style="list-style-type: none">• <code>S_OutControl</code> = FALSE• <code>Error</code> = FALSE
8010	Output Disable	<code>ProcessControl</code> is not active: <ul style="list-style-type: none">• <code>S_OutControl</code> = FALSE• <code>Error</code> = FALSE
8000	Output Enable	<code>ProcessControl</code> is active and safety is enabled: <ul style="list-style-type: none">• <code>S_OutControl</code> = TRUE• <code>Error</code> = FALSE

Sensor

What's in This Part

S_AI_COMP: Analog Input Compare.....	130
S_ANTIVALENT: Compare Antivalent Inputs.....	137
S_EMERGENCYSTOP: Emergency Stop Monitor.....	144
S_EQUIVALENT: Compare Equivalent Inputs	152
S_MUTING_PAR: Parallel Muting	158
S_MUTING_SEQ: Sequential Muting	172
S_TWO_HAND_CONTROL_TYPE_II: Two Hand Control.....	182
S_TWO_HAND_CONTROL_TYPE_III: Two Hand Control with Timer	189

Introduction

This section describes the elementary functions and the elementary function blocks of the **Sensor** family.

S_AI_COMP: Analog Input Compare

What's in This Chapter

Description	130
-------------------	-----

Introduction

This chapter describes the S_AI_COMP block.

Description

Function Description

Use the S_AI_COMP function block to perform a "one out of two" (1oo2) evaluation of two analog integer values provided by two different sensors:

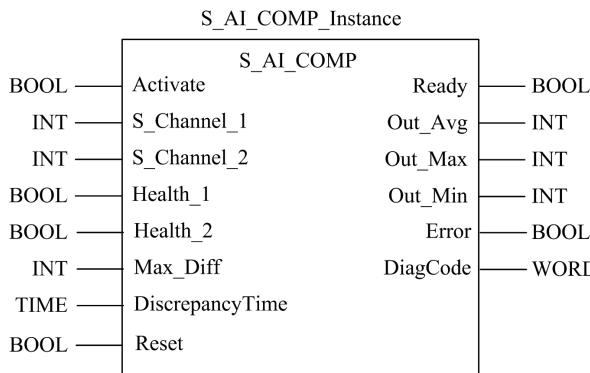
- If the inputs S_Channel_1 and S_Channel_2 are operating correctly, Health_1 and Health_2 are both set to TRUE. In this case, the block carries out a discrepancy analysis, as follows:
 - If the discrepancy between the inputs S_Channel_1 and S_Channel_2 is greater than the configured difference tolerance (set by Max_Diff) for longer than the configured discrepancy time (set by DiscrepancyTime), a discrepancy error is detected:
 - Error is set to TRUE.
 - DiagCode displays C001, indicating a discrepancy error is detected.
 - Out_Avg is set to 0.
 - Out_Min and Out_Max are maintained.
 - Otherwise:
 - Error is set to FALSE.
 - Out_Avg = (S_Channel_1 + S_Channel_2) / 2.
 - Out_Min = MIN (S_Channel_1; S_Channel_2).
 - Out_Max = MAX (S_Channel_1; S_Channel_2).

- If only one input channel (for example, S_Channel_1, but not S_Channel_2) is operating correctly, Health_1 is set to TRUE and Health_2 is set to FALSE. In this case:
 - Out_Avg, Out_Max, and Out_Min are all set equal to S_Channel_1.
 - Error is set to TRUE.
- If no input channel (neither S_Channel_1 nor S_Channel_2) is operating correctly, Health_1 and Health_2 are both set to FALSE. In this case:
 - Out_Avg, Out_Max and Out_Min are set to 0.
 - Error is set to TRUE.

If a discrepancy error is detected, it needs to be acknowledged. This is accomplished after the inputs are again operating within their assigned tolerance, by a rising edge of the Reset signal.

WARNING

LOSS OF THE SAFETY INTEGRITY LEVEL


Code that includes the S_AI_COMP function block must be certified in accordance with IEC61508 before it is used in operation.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTE: The S_AI_COMP function block is a modifiable template. You can edit the block structure to meet your application requirements. This block is not certified by the TÜV Rheinland Group.

Representation in FBD

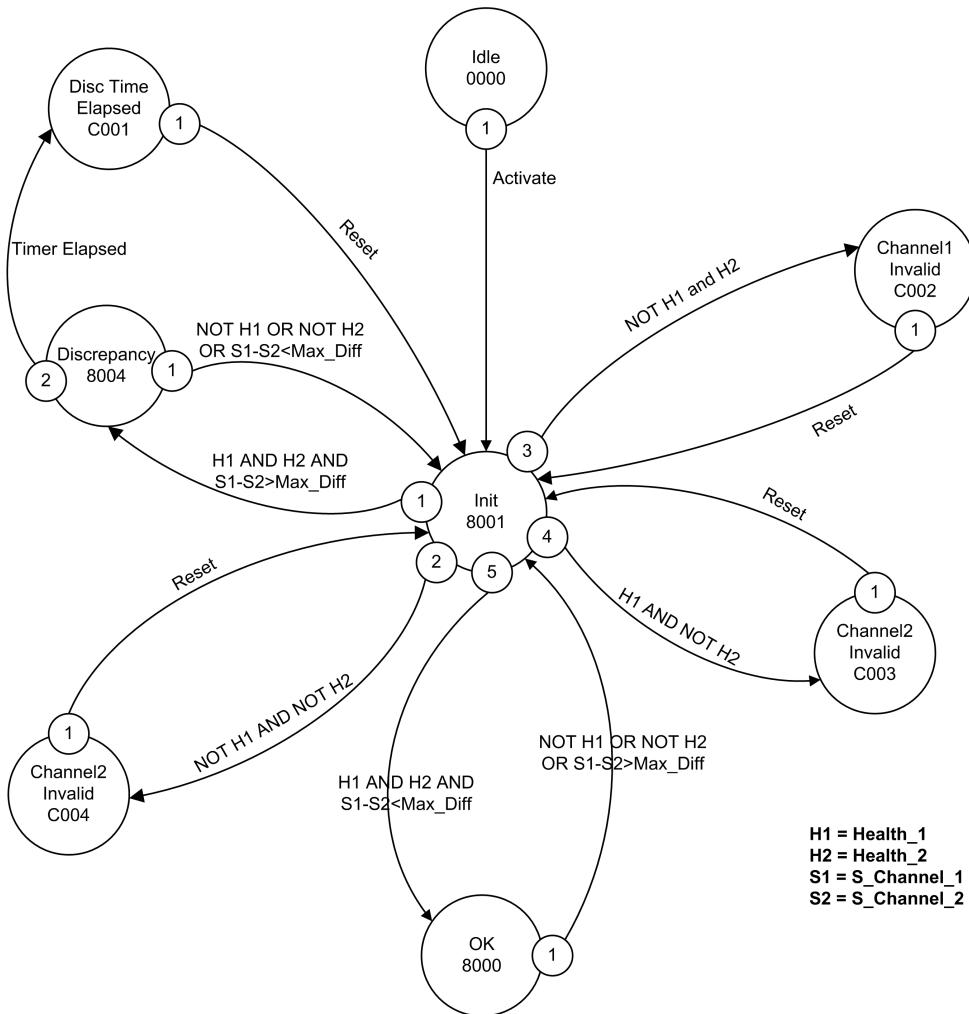
Representation

Input Parameters

Parameter	Data type	Init Value	Meaning
Activate	BOOL	FALSE	<p>The variable or constant value indicating activation state of the function block. This parameter can be connected to the variable, which represents the status (Active or Not Active) of the relevant safety device. This causes no irrelevant diagnostic information to be generated if a device is disabled:</p> <ul style="list-style-type: none"> When FALSE, all output variables are set to the initial values. Assign a static TRUE signal if no device is connected.
S_Channel_1	INT	0	Analog input value from channel 1.
S_Channel_2	INT	0	Analog input value from channel 2.
Health_1	BOOL	FALSE	Health state of analog Input module on channel 1: <ul style="list-style-type: none"> FALSE: The module is operational. TRUE: The module is not operational.
Health_2	BOOL	FALSE	Health state of analog Input module on channel 2: <ul style="list-style-type: none"> FALSE: The module is operational. TRUE: The module is not operational.
Max_Diff	INT	0	The constant configurable maximum discrepancy value between S_Channel_1 and S_Channel_2.

Parameter	Data type	Init Value	Meaning
Discrepancy-Time	TIME	T#0ms	The constant configurable maximum monitoring time for comparing S_Channel_1 and S_Channel_2 values.
Reset	BOOL	FALSE	<p>The variable value indicating reset of the state machine, coupled with detected error and status messages as indicated in the <code>DiagCode</code> parameter, after the underlying cause of the detected error has been removed. This behavior is designed as a detected error reset.</p> <p>NOTE: This function is only active on a signal change from FALSE to TRUE.</p>

Output Parameters


Parameter	Data type	Init Value	Meaning
Ready	BOOL	FALSE	<ul style="list-style-type: none"> TRUE indicates that the function block is activated and the output results are valid (same as the POWER LED of a safety relay). FALSE indicates the function block is not active and the program is not executed. <p>NOTE: This parameter can be useful in debug mode or to activate/deactivate additional function blocks, as well as for further processing in the functional program.</p>
Out_Avg	INT	0	Average value of S_Channel_1 and S_Channel_2.
Out_Max	INT	0	Maximum value between S_Channel_1 and S_Channel_2.
Out_Min	INT	0	Minimum value between S_Channel_1 and S_Channel_2.
Error	BOOL	FALSE	Function block detected error message.
DiagCode	WORD	16#0000	Function block diagnostic message.

Typical Timing Diagrams

State Diagram

The following diagram describes the state transitions of the S_EQUIVALENT function block:

NOTE: The transition to the Idle state from any other state, occurring because $\text{Activate} = \text{FALSE}$, is not depicted. Such a transition has the highest priority (0).

Detected Error Management

When an error is detected, Error is set to TRUE. The DiagCode parameter can present one of the following detected error values:

DiagCode	State Name	State Description and Output Settings
C001	Error 1	DiscrepancyTime elapsed in state 8004: • Error = TRUE
C002	Error 2	Channel 1 is invalid: • Error = TRUE
C003	Error 3	Channel 2 is invalid: • Error = TRUE
C004	Error 4	Channel 1 and Channel 2 are invalid: • Error = TRUE

Diagnostic Codes Management

When returning a status message, the Error parameter is set to FALSE, and the DiagCode parameter displays one of the following hexadecimal values:

DiagCode	State Name	State Description and Output Settings
0	IDLE	The function block is not active (initial state): • Error = FALSE
8001	INIT	The block detects activation, and is now activated: • Error = FALSE
8000	OK	Out_Avg contains an average of the two channel values, which is less than the Max_Diff setting. The discrepancy timer has not started: • Error = FALSE
8003	Discrepancy between channels	The difference between S_Channel_1 and S_Channel_2 values exceeds the Max_Diff setting. The discrepancy timer has started: • Error = FALSE

S_ANTIVALENT: Compare Antivalent Inputs

What's in This Chapter

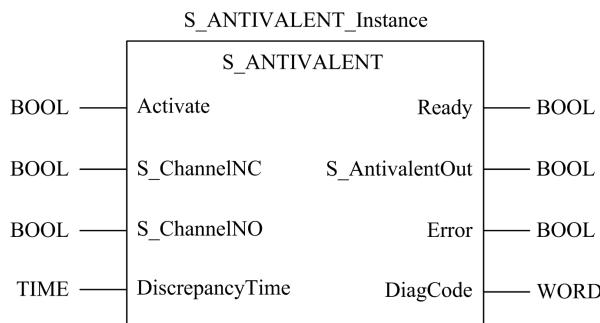
Description	137
-------------------	-----

Introduction

This chapter describes the S_ANTIVALENT block.

Description

Function Description


Use the S_ANTIVALENT function block to convert two antivalent `BOOL` inputs – one input normally closed (NC), the other input normally open (NO) – to a single `BOOL` output with discrepancy time monitoring.

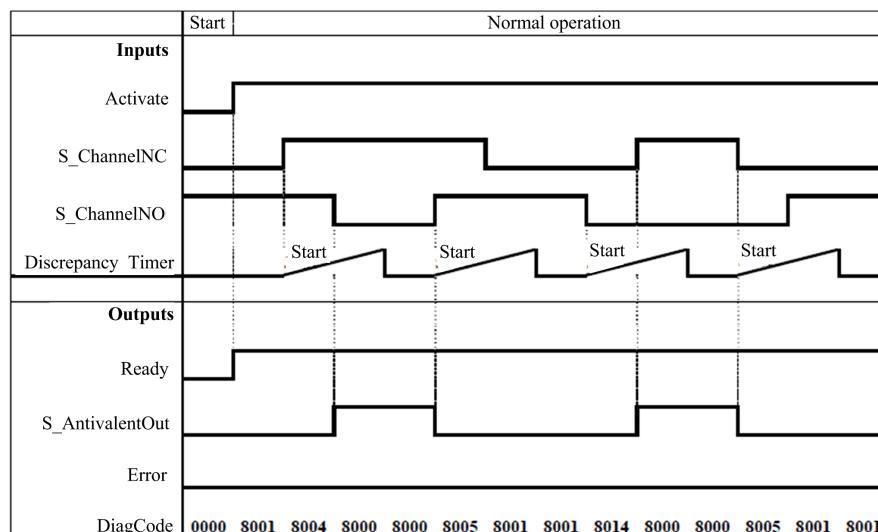
The two input channels are interdependent. The function block output returns the result of the evaluation of both channels. If `S_AntivalentOut` = TRUE and the state of one of the safety related inputs changes, the output immediately switches to FALSE.

`EN` and `ENO`, page 22 can be configured as additional parameters.

Representation in FBD

Representation

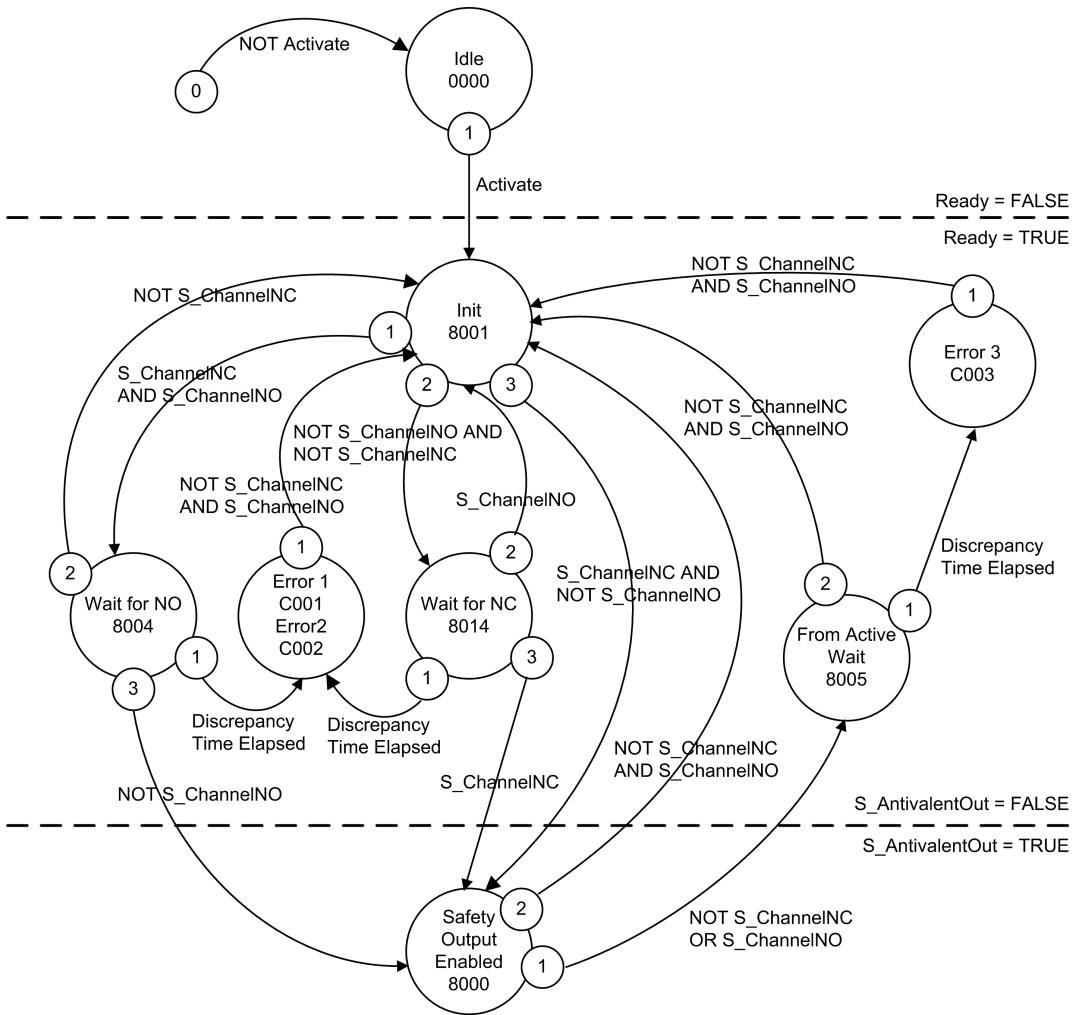
Input Parameters


Parameter	Data type	Init Value	Meaning
Activate	BOOL	FALSE	<p>The variable or constant value indicating activation state of the function block. This parameter can be connected to the variable, which represents the status (Active or Not Active) of the relevant safety device. This causes no irrelevant diagnostic information to be generated if a device is disabled:</p> <ul style="list-style-type: none"> • When FALSE, all output variables are set to the initial values. • Assign a static TRUE signal if no device is connected.
S_ChannelNC	BOOL	FALSE	<p>The variable value from the normally closed (NC) input channel:</p> <ul style="list-style-type: none"> • FALSE: NC contact open. • TRUE: NC contact closed.
S_ChannelNO	BOOL	TRUE	<p>The variable value from the normally open (NO) input channel:</p> <ul style="list-style-type: none"> • FALSE: NO contact open. • TRUE: NO contact closed.
Discrepancy-Time	TIME	T#0ms	The constant configurable maximum monitoring time for comparing S_ChannelNC and S_ChannelNO values.

Output Parameters

Parameter	Data type	Init Value	Meaning
Ready	BOOL	FALSE	<ul style="list-style-type: none"> • TRUE indicates that the function block is activated and the output results are valid (same as the POWER LED of a safety relay). • FALSE indicates the function block is not active and the program is not executed. <p>NOTE: This parameter can be useful in debug mode or to activate/deactivate additional function blocks, as well as for further processing in the functional program.</p>
S_AntivalentOut	BOOL	FALSE	<p>Output value based on a comparison of the two input channel values:</p> <ul style="list-style-type: none"> • FALSE: One of the following conditions exists: <ul style="list-style-type: none"> ◦ At least one of the input signals is not active. ◦ A status change has occurred and persisted for longer than the DiscrepancyTime setting.

Parameter	Data type	Init Value	Meaning
			<ul style="list-style-type: none"> TRUE: Both input signals are active, and any status change is within the <code>DiscrepancyTime</code> setting.
Error	BOOL	FALSE	Function block detected error message.
DiagCode	WORD	16#0000	Function block diagnostic message.


Typical Timing Diagrams

	Discrepancy time elapsing								Normal operation							
Inputs																
Activate																
S_ChannelINC																
S_ChannelNO	1	0	1	0	1	0	1	0	1	0	1	0				
Discrepancy Timer	8001	8004	8004	C001	C001	C001	C001	C001	8001	8001	8000	8005	8001			
Outputs																
Ready																
S_AntivalentOut																
Error	Error								Reset							
DiagCode	8001	8004	8004	C001	C001	C001	C001	C001	8001	8001	8000	8005	8001			

State Diagram

The following diagram describes the state transitions of the S_ANTIVALENT function block:

Source: PLCopen - Technical Committee 5, Safety Software, Technical Specification, Part 1: Concepts and Function Blocks, Version 1.0.

NOTE: The transition to the Idle state from any other state, occurring because Activate = FALSE, is not depicted. Such a transition has the highest priority (0).

Error Detection Function

The S_ANTIVALENT function block monitors the discrepancy time between the S_ChannelNC and S_ChannelNO inputs.

Detected Error Management

When an error is detected, S_AntivalentOut is set to FALSE, and Error is set to TRUE. The DiagCode parameter can present one of the following detected error values:

DiagCode	State Name	State Description and Output Settings
C001	Error 1	DiscrepancyTime elapsed in state 8004: <ul style="list-style-type: none">• S_AntivalentOut = FALSE• Error = TRUE
C002	Error 2	DiscrepancyTime elapsed in state 8014: <ul style="list-style-type: none">• S_AntivalentOut = FALSE• Error = TRUE
C003	Error 3	DiscrepancyTime elapsed in state 8005: <ul style="list-style-type: none">• S_AntivalentOut = FALSE• Error = TRUE

Diagnostic Codes Management

When returning a status message, the Error parameter is set to FALSE, and the DiagCode parameter displays one of the following hexadecimal values:

DiagCode	State Name	State Description and Output Settings
0	IDLE	The function block is not active (initial state): <ul style="list-style-type: none">• S_AntivalentOut = FALSE• Error = FALSE
8001	INIT	The block detects activation, and is now activated: <ul style="list-style-type: none">• S_AntivalentOut = FALSE• Error = FALSE
8000	Safety Output Enabled	The inputs switched to the active state in antivalent mode: <ul style="list-style-type: none">• S_AntivalentOut = TRUE• Error = FALSE

DiagCode	State Name	State Description and Output Settings
8004	Wait for Channel B	<p>S_ChannelNC has been switched to TRUE. The function block is now waiting for S_ChannelNO to be switched to FALSE. The discrepancy timer has started:</p> <ul style="list-style-type: none">• S_AntivalentOut = FALSE• Error = FALSE
8014	Wait for Channel A	<p>S_ChannelNO has been switched to FALSE. The function block is now waiting for S_ChannelNC to be switched to TRUE. The discrepancy timer has started:</p> <ul style="list-style-type: none">• S_AntivalentOut = FALSE• Error = FALSE
8005	From Active Wait	<p>One input channel has been switched to inactive. The function block is now waiting for the other input channel also to be switched to inactive:</p> <ul style="list-style-type: none">• S_AntivalentOut = FALSE• Error = FALSE

S_EMERGENCYSTOP: Emergency Stop Monitor

What's in This Chapter

Description	144
-------------------	-----

Introduction

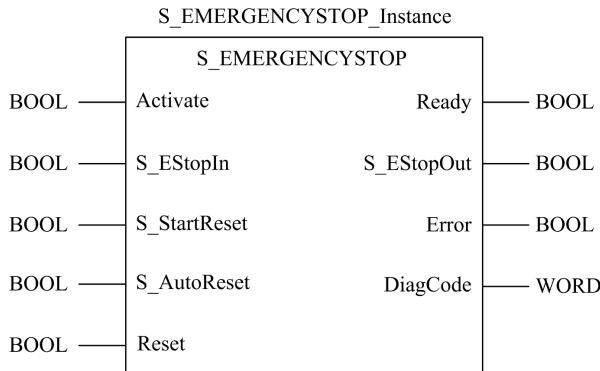
This chapter describes the S_EMERGENCYSTOP block.

Description

Function Description

Use the S_EMERGENCYSTOP function block to monitor the state of an emergency stop button. This function block can be used to activate emergency switch off functionality.

WARNING


RISK OF UNINTENDED OPERATION

Activate the S_StartReset and S_AutoReset inputs only after you verify that no hazardous situation can occur if the system is started.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

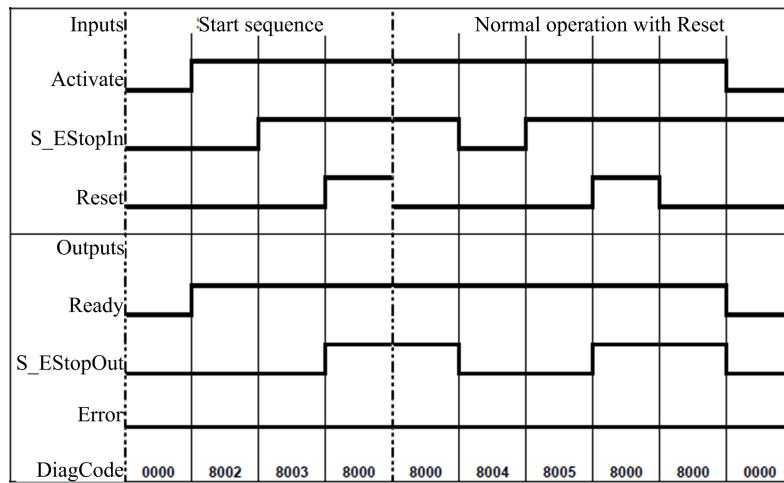
Representation in FBD

Representation

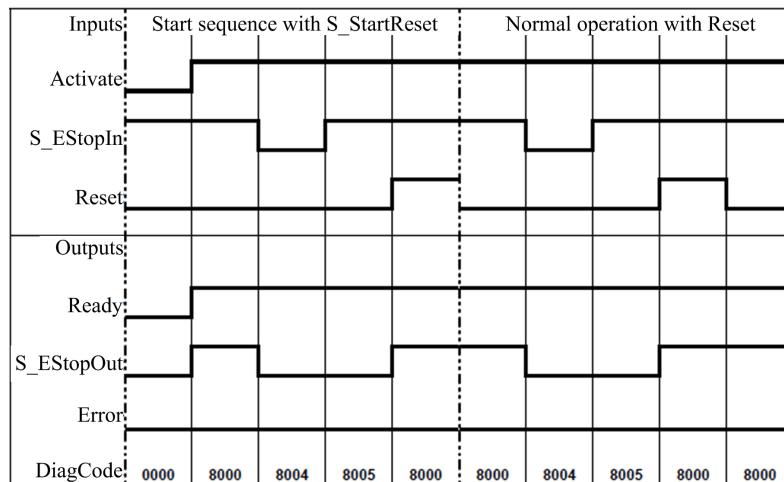
Input Parameters

Parameter	Data type	Init Value	Meaning
Activate	BOOL	FALSE	<p>The variable or constant value indicating activation state of the function block. This parameter can be connected to the variable, which represents the status (Active or Not Active) of the relevant safety device. This causes no irrelevant diagnostic information to be generated if a device is disabled:</p> <ul style="list-style-type: none"> When FALSE, all output variables are set to the initial values. Assign a static TRUE signal if no device is connected.
S_EStopIn	BOOL	FALSE	<p>A variable input signaling the status of an emergency stop button:</p> <ul style="list-style-type: none"> FALSE: A demand for a safety-related response has been made. The emergency button is engaged. TRUE: There is no demand for a safety-related response. The emergency button is not engaged.
S_StartReset	BOOL	FALSE	<p>A variable or constant value that indicates:</p> <ul style="list-style-type: none"> FALSE: Manual reset when system is started (warm or cold). TRUE: Automatic reset when system is started (warm or cold). <p>NOTE: Activate this function only after you have confirmed that no hazard can occur at the start of</p>

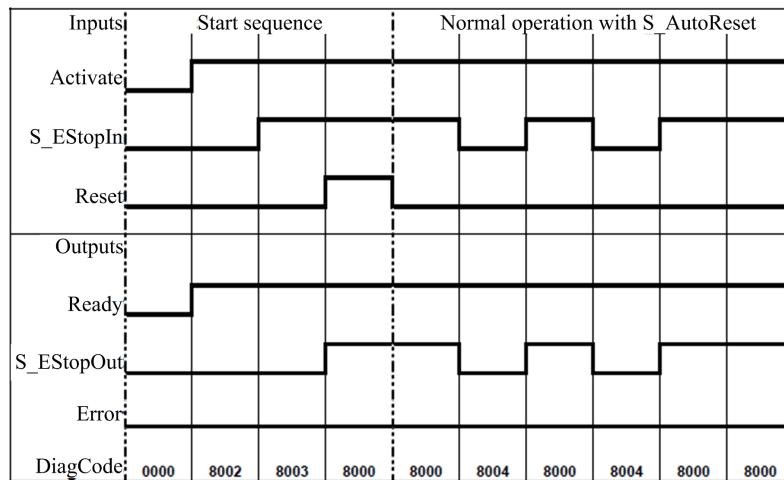
Parameter	Data type	Init Value	Meaning
			<p>the PES. Use of the Automatic Circuit Reset feature of the function blocks requires implementation of other system or application measures to guard against unexpected (or unintended) start-up.</p>
S_AutoReset	BOOL	FALSE	<p>A variable or constant value indicating the state of the auto reset function:</p> <ul style="list-style-type: none"> • FALSE: Manual reset when emergency stop button is released. • TRUE: Automatic reset when emergency stop button is released <p>NOTE: Activate this function only after you have confirmed that no hazard can occur at the start of the system. Use of the Automatic Circuit Reset feature of the function blocks requires implementation of other system or application measures to guard against unexpected (or unintended) start-up.</p>
Reset	BOOL	FALSE	<p>The variable value indicating reset of the state machine, coupled with detected error and status messages as indicated in the <code>DiagCode</code> parameter, after the underlying cause of the detected error has been removed. This behavior is designed as a detected error reset.</p> <p>NOTE: This function is only active on a signal change from FALSE to TRUE.</p>


Output Parameters

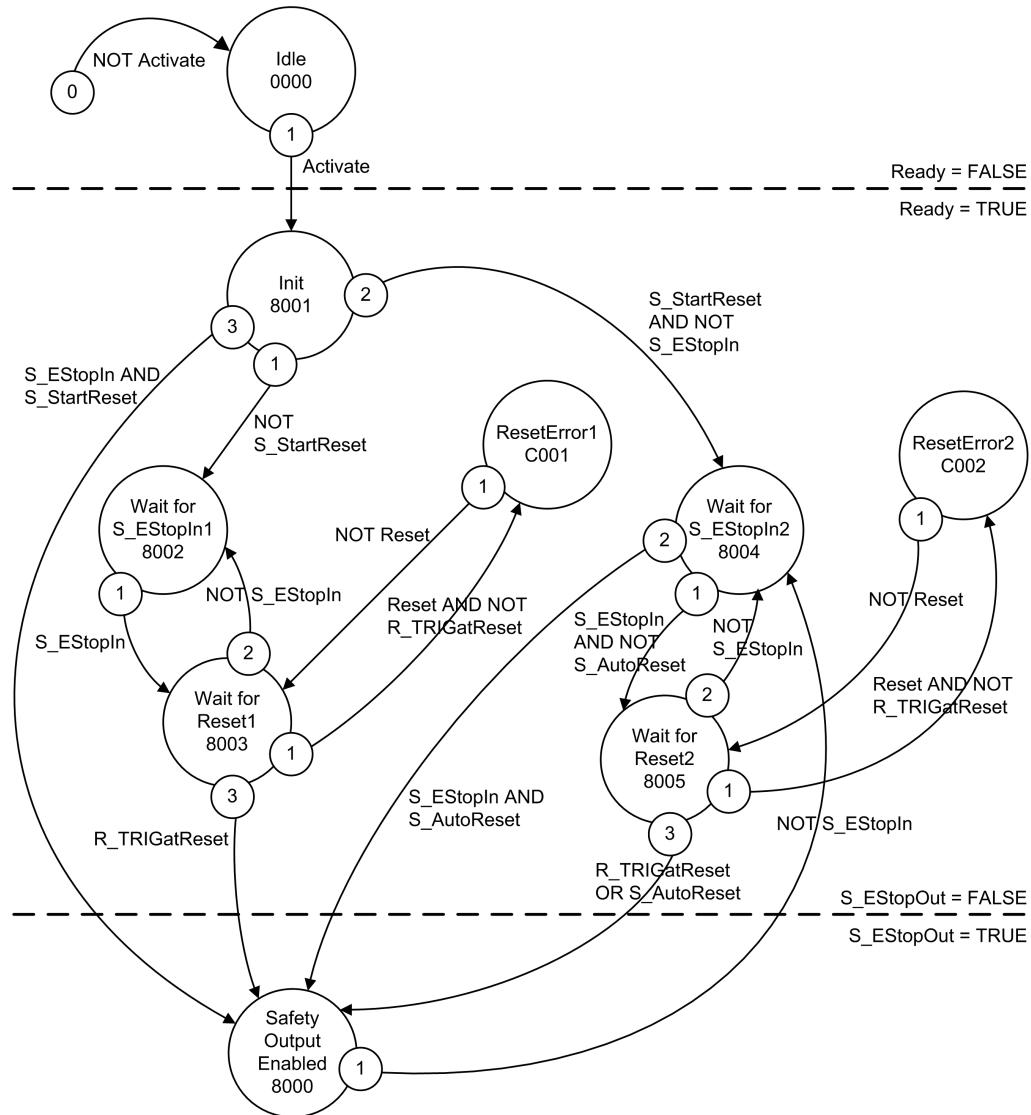
Parameter	Data type	Init Value	Meaning
Ready	BOOL	FALSE	<ul style="list-style-type: none"> • TRUE indicates that the function block is activated and the output results are valid (same as the POWER LED of a safety relay). • FALSE indicates the function block is not active and the program is not executed. <p>NOTE: This parameter can be useful in debug mode or to activate/deactivate additional function blocks, as well as for further processing in the functional program.</p>
S_EstopOut	BOOL	FALSE	<p>A safety related output that indicates:</p> <ul style="list-style-type: none"> • FALSE: Safety output disabled. A demand exists for safety-related response (e.g., an emergency stop button is engaged, a reset is required, or internal errors have been detected).


Parameter	Data type	Init Value	Meaning
			<ul style="list-style-type: none"> TRUE: Safety output enabled. No demand for safety-related response (e.g., emergency stop button not engaged, no internal detected errors active).
Error	BOOL	FALSE	Function block detected error message.
DiagCode	WORD	16#0000	Function block diagnostic message.

Typical Timing Diagrams


`S_StartReset = FALSE; S_AutoReset = FALSE`

S_StartReset = TRUE; S_AutoReset = FALSE



S_StartReset = FALSE; S_AutoReset = TRUE

State Diagram

The following diagram describes the state transitions of the S_EMERGENCYSTOP function block:

Source: PLCopen - Technical Committee 5, Safety Software, Technical Specification, Part 1: Concepts and Function Blocks, Version 1.0.

NOTE: The transition to the Idle state from any other state, occurring because `Activate = FALSE`, is not depicted. Such a transition has the highest priority (0).

Error Detection

The function block detects a static TRUE signal at `Reset` input.

Detected Error Management

`S_EStopOut` is set to an initial value of FALSE.

If a static TRUE signal is received at the `Reset` input, the `DiagCode` output indicates the relevant detected error code and the `Error` output is set to TRUE.

To leave the detected error state, set `Reset` input to FALSE.

When returning a detected error message, the `DiagCode` parameter can present one of the following detected error values

DiagCode	State Name	State Description and Output Settings
C001	Reset Error 1	Reset signal is true while waiting for <code>S_EStopIn</code> = TRUE: <ul style="list-style-type: none"> • <code>S_EStopOut</code> = FALSE • <code>Error</code> = TRUE
C002	Reset Error 2	Reset signal is true while waiting for <code>S_EStopIn</code> = TRUE: <ul style="list-style-type: none"> • <code>S_EStopOut</code> = FALSE • <code>Error</code> = TRUE

Diagnostic Codes Management

When returning a status message, the `Error` parameter is set to FALSE, and the `DiagCode` parameter displays one of the following hexadecimal values:

DiagCode	State Name	State Description and Output Settings
0	IDLE	The function block is not active (initial state): <ul style="list-style-type: none"> • <code>S_EStopOut</code> = FALSE • <code>Error</code> = FALSE
8001	INIT	<code>Activate</code> is TRUE. The function block was enabled. Check if <code>S_StartReset</code> needs to be set:

DiagCode	State Name	State Description and Output Settings
		<ul style="list-style-type: none"> • S_EStopOut = FALSE • Error = FALSE
8002	Safety Output Enabled	Activate is TRUE. Check if Reset is FALSE and wait for S_EStopIn = TRUE: <ul style="list-style-type: none"> • S_EStopIn = TRUE • S_EStopOut = FALSE • Error = FALSE
8003	Wait for Channel B	Activate is TRUE. S_EStopIn = TRUE. Wait for rising trigger of Reset: <ul style="list-style-type: none"> • S_EStopOut = FALSE • Error = FALSE
8004	Wait for Channel A	Activate is TRUE. Safety demand detected. Check if Reset is FALSE and wait for S_EStopIn = TRUE: <ul style="list-style-type: none"> • S_EStopOut = FALSE • Error = FALSE
8005	From Active Wait	Activate is TRUE. S_EStopIn = TRUE. Check for S_AutoReset or wait for rising trigger of Reset: <ul style="list-style-type: none"> • S_EStopOut = FALSE • Error = FALSE
8000	From Active Wait	Activate is TRUE. S_EStopIn = TRUE. Functional mode with S_EStopOut = TRUE: <ul style="list-style-type: none"> • S_EStopOut = TRUE • Error = FALSE

S_EQUIVALENT: Compare Equivalent Inputs

What's in This Chapter

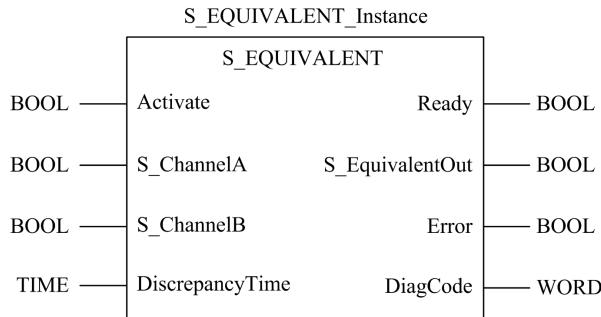
Description	152
-------------------	-----

Introduction

This chapter describes the S_EQUIVALENT block.

Description

Function Description


Use the S_EQUIVALENT function block to convert two equivalent `BOOL` inputs – both inputs either normally closed (NC) or normally open (NO) – to a single `BOOL` output with discrepancy time monitoring.

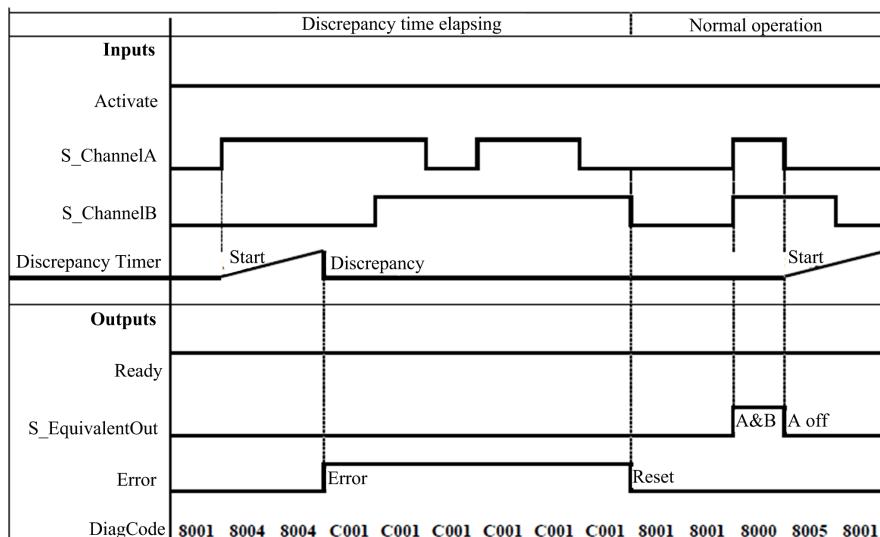
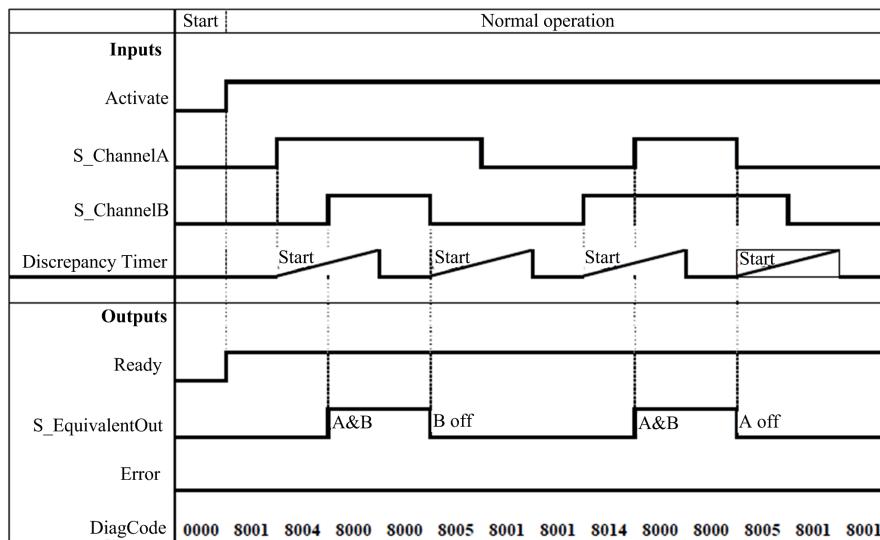
NOTE: Because the S_EQUIVALENT function block does not include a restart interlock, use it in combination with other safety functions and not as a stand-alone safety block.

EN and ENO, page 22 can be configured as additional parameters.

Representation in FBD

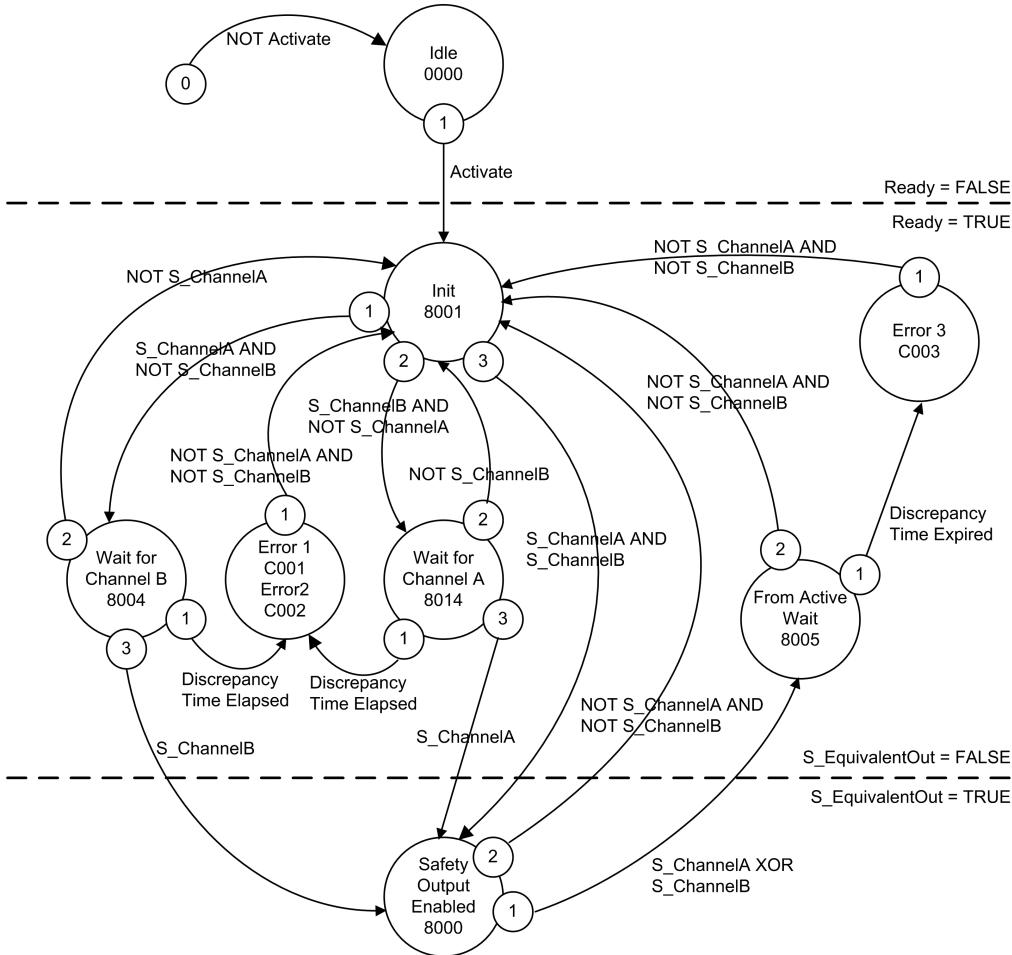
Representation

Input Parameters



Parameter	Data type	Init Value	Meaning
Activate	BOOL	FALSE	<p>The variable or constant value indicating activation state of the function block. This parameter can be connected to the variable, which represents the status (Active or Not Active) of the relevant safety device. This causes no irrelevant diagnostic information to be generated if a device is disabled:</p> <ul style="list-style-type: none"> • When FALSE, all output variables are set to the initial values. • Assign a static TRUE signal if no device is connected.
S_ChannelA	BOOL	FALSE	<p>The variable value from input A:</p> <ul style="list-style-type: none"> • FALSE: Contact A open. • TRUE: Contact A closed.
S_ChannelB	BOOL	FALSE	<p>The variable value from input B:</p> <ul style="list-style-type: none"> • FALSE: Contact B open. • TRUE: Contact B closed.
Discrepancy-Time	TIME	T#0ms	<p>The constant configurable maximum monitoring time for comparing S_ChannelA and S_ChannelB values.</p>

Output Parameters

Parameter	Data type	Init Value	Meaning
Ready	BOOL	FALSE	<ul style="list-style-type: none"> • TRUE indicates that the function block is activated and the output results are valid (same as the POWER LED of a safety relay). • FALSE indicates the function block is not active and the program is not executed. <p>NOTE: This parameter can be useful in debug mode or to activate/deactivate additional function blocks, as well as for further processing in the functional program.</p>
S_EquivalentOut	BOOL	FALSE	<p>Output value based on a comparison of the two input channel values:</p> <ul style="list-style-type: none"> • FALSE: One of the following conditions exists: <ul style="list-style-type: none"> ◦ At least one of the input signals is FALSE. ◦ A status change has occurred and persisted for longer than the DiscrepancyTime setting. • TRUE: Both input signals are active, and any status change is within the DiscrepancyTime setting.


Parameter	Data type	Init Value	Meaning
Error	BOOL	FALSE	Function block detected error message.
DiagCode	WORD	16#0000	Function block diagnostic message.

Typical Timing Diagrams

State Diagram

The following diagram describes the state transitions of the S_EQUIVALENT function block:

Source: PLcopen - Technical Committee 5, Safety Software, Technical Specification, Part 1: Concepts and Function Blocks, Version 1.0.

NOTE: The transition to the Idle state from any other state, occurring because Activate = FALSE, is not depicted. Such a transition has the highest priority (0).

Error Detection Function

The `S_EQUIVALENT` function block monitors the discrepancy time between the `S_Channel1A` and `S_Channel1B` inputs, when switching to `TRUE` and also when switching to `FALSE`.

Detected Error Management

When an error is detected, `S_EquivalentOut` is set to `FALSE`, and `Error` is set to `TRUE`. The `DiagCode` parameter can present one of the following detected error values:

DiagCode	State Name	State Description and Output Settings
C001	Error 1	DiscrepancyTime elapsed in state 8004: <ul style="list-style-type: none"><code>S_EquivalentOut</code> = <code>FALSE</code><code>Error</code> = <code>TRUE</code>
C002	Error 2	DiscrepancyTime elapsed in state 8014: <ul style="list-style-type: none"><code>S_EquivalentOut</code> = <code>FALSE</code><code>Error</code> = <code>TRUE</code>
C003	Error 3	DiscrepancyTime elapsed in state 8005: <ul style="list-style-type: none"><code>S_EquivalentOut</code> = <code>FALSE</code><code>Error</code> = <code>TRUE</code>

Diagnostic Codes Management

When returning a status message, the `Error` parameter is set to `FALSE`, and the `DiagCode` parameter displays one of the following hexadecimal values:

DiagCode	State Name	State Description and Output Settings
0	IDLE	The function block is not active (initial state): <ul style="list-style-type: none"><code>S_EquivalentOut</code> = <code>FALSE</code><code>Error</code> = <code>FALSE</code>
8001	INIT	The block detects activation, and is now activated: <ul style="list-style-type: none"><code>S_EquivalentOut</code> = <code>FALSE</code><code>Error</code> = <code>FALSE</code>
8000	Safety Output Enabled	The inputs switched to <code>TRUE</code> in equivalent mode: <ul style="list-style-type: none"><code>S_EquivalentOut</code> = <code>TRUE</code><code>Error</code> = <code>FALSE</code>

DiagCode	State Name	State Description and Output Settings
8004	Wait for Channel B	<p>S_ChannelA has been switched to TRUE. The function block is now waiting for S_ChannelB. The discrepancy timer has started:</p> <ul style="list-style-type: none">• S_EquivalentOut = FALSE• Error = FALSE
8014	Wait for Channel A	<p>S_ChannelB has been switched to TRUE. The function block is now waiting for S_ChannelA. The discrepancy timer has started:</p> <ul style="list-style-type: none">• S_EquivalentOut = FALSE• Error = FALSE
8005	From Active Wait	<p>One input channel has been switched to FALSE. The function block is now waiting for the other input channel also to be switched to FALSE. The discrepancy timer has started:</p> <ul style="list-style-type: none">• S_EquivalentOut = FALSE• Error = FALSE

S_MUTING_PAR: Parallel Muting

What's in This Chapter

Description	158
-------------------	-----

Introduction

This chapter describes the S_MUTING_PAR block.

Description

Muting

Muting is the intentional temporary suppression of the safety function implemented by an active opto-electronic protective device (AOPD), such as a light curtain, that guards against entry into a safety zone. Muting is intended to permit necessary materials – but not humans – to enter the safety zone without interrupting the work process. One or two pairs of sensors, properly situated in the production sequence, can be used to trigger muting of the safety function. Each pair of sensors can be situated in parallel positions to operate simultaneously (parallel muting) or can be staggered to operate sequentially (sequential muting).

Muting sensors can be proximity switches, photoelectric barriers, limit switches, and so forth, which need not be failsafe. Indicator lights are used to indicate that muting is active.

WARNING

RISK OF UNINTENDED OPERATION

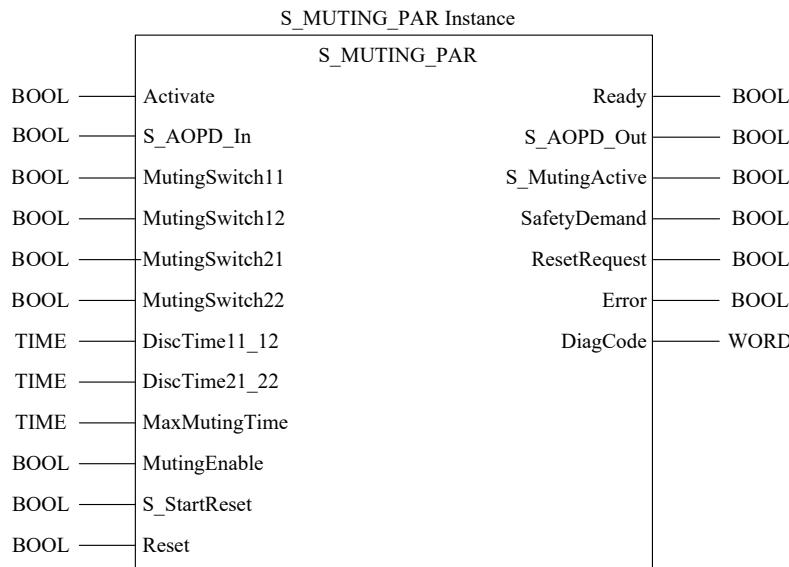
Activate the S_StartReset and S_AutoReset inputs only after you verify that no hazardous situation can occur if the system is started.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Function Description

Use the S_MUTING_PAR function block to implement parallel muting of a safety process. This function block is designed to be used with four muting sensors. You can specify the maximum allowable times for:

- Muting of the safety process (DiscTime11_12 and DiscTime21_22) to allow material to enter or exit a detection zone guarded by an AOPD.
- Completing the entire muting sequence (MaxMutingTime), beginning with the material's initial triggering of muting switches to its ultimate exit from the safety zone.


The block supports bi-directional (forward and backward) travel of material.

Muting is enabled by the MutingEnable signal, which is issued by the process control system. The S_MutingActive signal is set to TRUE to when the muting function is activated.

Upon expiration of the MaxMutingTime period, the muting function should be canceled.

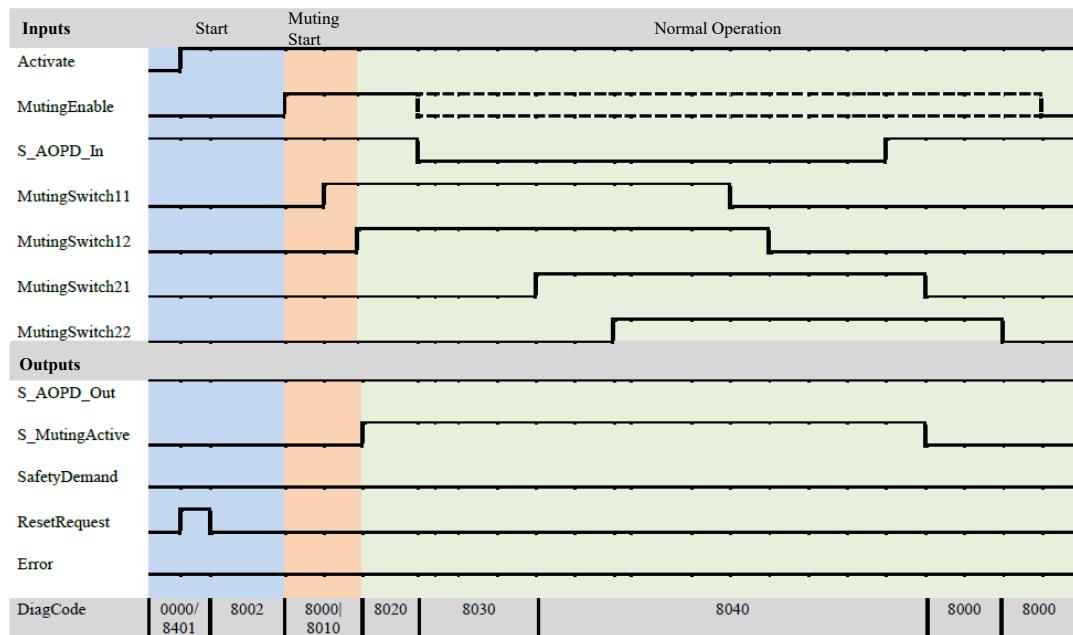
Representation in FBD

Representation

Input Parameters

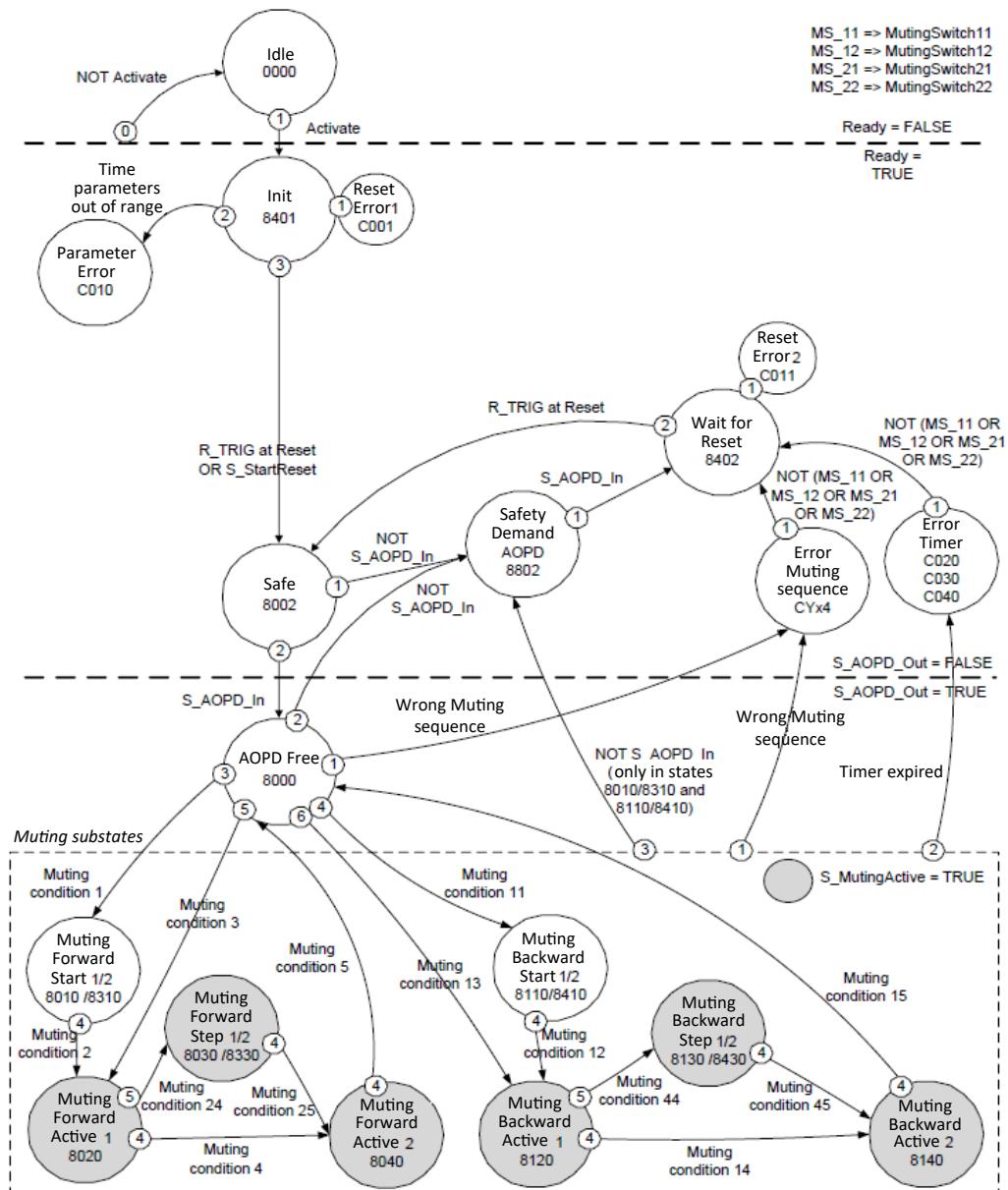
Parameter	Data type	Init Value	Meaning
Activate	BOOL	FALSE	<p>The variable or constant value indicating activation state of the function block. This parameter can be connected to the variable, which represents the status (Active or Not Active) of the relevant safety device. This causes no irrelevant diagnostic information to be generated if a device is disabled:</p> <ul style="list-style-type: none"> When FALSE, all output variables are set to the initial values. Assign a static TRUE signal if no device is connected.
S_AOPD_In	BOOL	FALSE	<p>A variable input signal from an output signal switching device (OSSD), typically an output from an AOPD such as a light curtain:</p> <ul style="list-style-type: none"> FALSE: The protection field of the AOPD has been penetrated. TRUE: The protection field of the AOPD has not been penetrated.
MutingSwitch11	BOOL	FALSE	<p>The variable status of muting sensor 11 (i.e. the first sensor in the first pair of sensors):</p> <ul style="list-style-type: none"> FALSE: The sensor is not actuated. TRUE: The sensor is actuated.
MutingSwitch12	BOOL	FALSE	<p>The variable status of muting sensor 12 (i.e. the second sensor in the first pair of sensors):</p> <ul style="list-style-type: none"> FALSE: The sensor is not actuated. TRUE: The sensor is actuated.
MutingSwitch21	BOOL	FALSE	<p>The variable status of muting sensor 21 (i.e. the first sensor in the second pair of sensors):</p> <ul style="list-style-type: none"> FALSE: The sensor is not actuated. TRUE: The sensor is actuated.
MutingSwitch22	BOOL	FALSE	<p>The variable status of muting sensor 22 (i.e. the second sensor in the second pair of sensors):</p> <ul style="list-style-type: none"> FALSE: The sensor is not actuated. TRUE: The sensor is actuated.
DiscTime11_12	TIME	T#0s	<p>The configurable maximum allowable time, from 0...4 s, between the triggering of muting switch 11 or 12, and material penetrating the AOPD protection field.</p>
DiscTime21_22	TIME	T#0s	<p>The configurable maximum allowable time, from 0...4 s, between the triggering of muting switch 21 or 22, and material penetrating the AOPD protection field.</p>
MaxMutingTime	TIME	T#0s	<p>The configurable maximum time, from 0 s...10 m, for completing a muting sequence, beginning when the first sensor is actuated.</p>

Parameter	Data type	Init Value	Meaning
MutingEnable	BOOL	FALSE	<p>The variable or constant command, issued by the process control system, that enables or disables the muting function. After the function is enabled, it can be invoked as needed by the process control system:</p> <ul style="list-style-type: none"> • FALSE: Muting is disabled. • TRUE: Muting is enabled.
S_StartReset	BOOL	FALSE	<p>A variable or constant value that indicates:</p> <ul style="list-style-type: none"> • FALSE: Manual reset when system is started (warm or cold). • TRUE: Automatic reset when system is started (warm or cold). <p>NOTE: Activate this function only after you have confirmed that no hazard can occur at the start of the PES. Use of the Automatic Circuit Reset feature of the function blocks requires implementation of other system or application measures to guard against unexpected (or unintended) start-up.</p>
Reset	BOOL	FALSE	<p>The variable value indicating reset of the state machine, coupled with detected error and status messages as indicated in the <code>DiagCode</code> parameter, after the underlying cause of the detected error has been removed. This behavior is designed as a detected error reset.</p> <p>NOTE: This function is only active on a signal change from FALSE to TRUE.</p>


Output Parameters

Parameter	Data type	Init Value	Meaning
Ready	BOOL	FALSE	<ul style="list-style-type: none"> • TRUE indicates that the function block is activated and the output results are valid (same as the POWER LED of a safety relay). • FALSE indicates the function block is not active and the program is not executed. <p>NOTE: This parameter can be useful in debug mode or to activate/deactivate additional function blocks, as well as for further processing in the functional program.</p>
S_AOPD_Out	BOOL	FALSE	<p>A safety related output that indicates the status of the muted output signal switching device (AOPD):</p> <ul style="list-style-type: none"> • FALSE: The AOPD protection field has been penetrated and muting is not enabled.

Parameter	Data type	Init Value	Meaning
			<ul style="list-style-type: none"> • TRUE: The AOPD protection field has not been penetrated or muting is enabled.
S_MutingActive	BOOL	FALSE	<p>The status of the muting function:</p> <ul style="list-style-type: none"> • FALSE: Muting is disabled. • TRUE: Muting is enabled.
SafetyDemand	BOOL	FALSE	<p>Optional output indicating the function block is active and the primary safety function is demanded. Other safety related input parameters are not considered. The safety loop is not closed and the safe state is demanded for the related safety output. There is no error.</p> <ul style="list-style-type: none"> • FALSE: No safety demand is made. • TRUE: A safety demand is made.
ResetRequest	BOOL	FALSE	<p>Optional output that can be used to signal the operator to press reset in order to continue.</p> <ul style="list-style-type: none"> • FALSE: Reset not requested. • TRUE: Reset requested.
Error	BOOL	FALSE	<p>Detected error flag:</p> <ul style="list-style-type: none"> • TRUE indicates an error has been detected, and the function block is in error state, as described by the <code>DiagCode</code> output. • FALSE indicates no error is detected and the function block is in a different state, as described by the <code>DiagCode</code> output (which is set in the same cycle as the state change).
DiagCode	WORD	16#0000	<p>Diagnostic code.</p> <p>All states of the function block (Active, Not Active, and Error) are represented by this register. This information is encoded in hexadecimal format so that more than 16 codes can be represented. Only one currently active code is represented at any time. If multiple errors are detected, the <code>DiagCode</code> output indicates the first detected error. The <code>DiagCode</code> can be used for debugging and processing of the functional program.</p>


Typical Timing Diagram

Example Timing diagram for S_MUTING_PAR with S_StartReset = True:

State Diagram

The following diagram describes the state transitions of the S_MUTING_PAR function block:

Source: *PLCopen - Technical Committee 5, Safety Software, Technical Specification, Part 1: Concepts and Function Blocks, Version 2.01.*

NOTE: The transition to the Idle state from any other state, occurring because Activate = FALSE, is not depicted. Such a transition has the highest priority (0).

Error Detection

The S_MUTING_PAR block detects the following error conditions:

- DiscTime11_12 or DiscTime21_22 have been set to values less than 0 s or greater than 4 s.
- MaxMutingTime has been set to a value less than 0 s or greater than 10 min.
- The discrepancy time for the MutingSwitch11/12 or MutingSwitch21/22 sensor pairs has been exceeded.
- S_MutingActive has been equal to TRUE for a period that exceeds the maximum muting time (MaxMutingTime) setting.
- Muting sensors MutingSwitch11, MutingSwitch12, MutingSwitch21, and MutingSwitch22 are activated in the incorrect sequence.
- A muting sequence begins without first being enabled by MutingEnable.
- A static Reset condition is detected in state 8401 and 8403.

The function block detects a static TRUE signal at `Reset` input.

Detected Error Management

If an error is detected, the `S_AOPD_Out` and `S_MutingActive` outputs are set to FALSE. The `DiagCode` output indicates the relevant detected error code and the `Error` output is set to TRUE.

`SafetyDemand` and `ResetRequest` are set to FALSE in all the detected error states (i.e. all **DiagCode** values in the format C•••). `ResetRequest` is TRUE only in states `Init` and `Wait For Reset`.

A restart is inhibited until the detected error conditions are cleared and the safe state is acknowledged using `Reset`.

NOTE: Some **DiagCode** status code values have changed in the release of *PLCopen - Technical Committee 5, Safety Software, Technical Specification, Part 1: Concepts and Function Blocks, Version 2.01*. Changed **DiagCode** values in the following table are marked with the notation “(*)”.

When returning a detected error message, the `DiagCode` parameter can present one of the following detected error values

DiagCode	State Name	State Description and Output Settings
C001	Reset Error 1	<p>A static <code>Reset</code> condition is detected after function block activation:</p> <ul style="list-style-type: none"> • <code>S_AOPD_Out = FALSE</code> • <code>S_MutingActive = FALSE</code> • <code>SafetyDemand = FALSE</code> • <code>ResetRequest = FALSE</code> • <code>Error = TRUE</code>
C011(*)	Reset Error 2	<p>A static <code>Reset</code> condition is detected in state 8003:</p> <ul style="list-style-type: none"> • <code>S_AOPD_Out = FALSE</code> • <code>S_MutingActive = FALSE</code> • <code>SafetyDemand = FALSE</code> • <code>ResetRequest = FALSE</code> • <code>Error = TRUE</code>
CYx4	Error Muting Sequence	<p>An error is detected in a muting switch in one of the following states: 8000, 8010, 8310, 8012, 8001, 8030, 8330, 8040, 8110, 8410, 8120, 8130, 8430, or 8140:</p> <ul style="list-style-type: none"> • <code>S_AOPD_Out = FALSE</code> • <code>S_MutingActive = FALSE</code> • <code>SafetyDemand = FALSE</code> • <code>ResetRequest = FALSE</code> • <code>Error = TRUE</code> <p>NOTE: In this DiagCode, "Y" and "x" have the following meanings:</p> <ul style="list-style-type: none"> • Y: Status in the sequence (two states for forward direction & two states for backward direction): <ul style="list-style-type: none"> ◦ 0: Error detected in state 8000 ◦ 1: Error detected in state Forward 8010 ◦ 2: Error detected in state Forward 8310 ◦ 3: Error detected in state Forward 8020 ◦ 4: Error detected in state Forward 8030 ◦ 5: Error detected in state Forward 8330 ◦ 6: Error detected in state Forward 8040 ◦ 7: Error detected in state Backward 8110 ◦ 8: Error detected in state Backward 8410 ◦ 9: Error detected in state Backward 8120 ◦ A: Error detected in state Backward 8130 ◦ B: Error detected in state Backward 8430 ◦ C: Error detected in state Backward 8140 ◦ F: Muting enable missing

DiagCode	State Name	State Description and Output Settings
		<ul style="list-style-type: none"> • x: Identity of sensor where error detected. One of four bits: <ul style="list-style-type: none"> ◦ 0: muting switch 11 ◦ 1: muting switch 12 ◦ 2: muting switch 21 ◦ 3: muting switch 22
C010(*)	Parameter Error	<p>MaxMutingTime value out of range:</p> <ul style="list-style-type: none"> • <code>S_AOPD_Out = FALSE</code> • <code>S_MutingActive = FALSE</code> • <code>SafetyDemand = FALSE</code> • <code>ResetRequest = FALSE</code> • <code>Error = TRUE</code>
C020(*)	Error Timer MaxMuting	<p><code>S_MutingActive</code> has been active for longer than the <code>MaxMutingTime</code> setting:</p> <ul style="list-style-type: none"> • <code>S_AOPD_Out = FALSE</code> • <code>S_MutingActive = FALSE</code> • <code>SafetyDemand = FALSE</code> • <code>ResetRequest = FALSE</code> • <code>Error = TRUE</code>
C030(*)	Error Timer MS11_12	<p>The elapsed time between the triggering of muting switch 11 or 12 and penetrating the AOPD protection filed exceeds <code>DiscTime11_12</code>:</p> <ul style="list-style-type: none"> • <code>S_AOPD_Out = FALSE</code> • <code>S_MutingActive = FALSE</code> • <code>SafetyDemand = FALSE</code> • <code>ResetRequest = FALSE</code> • <code>Error = TRUE</code>
C040(*)	Error Timer MS21_22	<p>The elapsed time between the triggering of muting switch 21 or 22 and penetrating the AOPD protection filed exceeds <code>DiscTime21_22</code>:</p> <ul style="list-style-type: none"> • <code>S_AOPD_Out = FALSE</code> • <code>S_MutingActive = FALSE</code> • <code>SafetyDemand = FALSE</code> • <code>ResetRequest = FALSE</code> • <code>Error = TRUE</code>

Diagnostic Codes Management

When returning a status message, the `Error` parameter is set to FALSE, and the `DiagCode` parameter displays one of the following hexadecimal values:

NOTE: Some **DiagCode** status code values have changed in the release of *PLCopen - Technical Committee 5, Safety Software, Technical Specification, Part 1: Concepts and Function Blocks, Version 2.01*. Changed **DiagCode** values in the following table are marked with the notation “(*)”.

DiagCode	State Name	State Description and Output Settings
0000	IDLE	<p>The function block is not active (initial state):</p> <ul style="list-style-type: none"> • <code>S_AOPD_Out = FALSE</code> • <code>S_MutingActive = FALSE</code> • <code>SafetyDemand = FALSE</code> • <code>ResetRequest = FALSE</code> • <code>Error = FALSE</code>
8000	AOPD Free	<p>Muting is not active and no safety demand from AOPD. If timers from a prior muting are still running, they are stopped:</p> <ul style="list-style-type: none"> • <code>S_AOPD_Out = TRUE</code> • <code>S_MutingActive = FALSE</code> • <code>SafetyDemand = FALSE</code> • <code>ResetRequest = FALSE</code> • <code>Error = FALSE</code>
8401(*)	INIT	<p><code>Active = TRUE</code>:</p> <ul style="list-style-type: none"> • <code>S_AOPD_Out = FALSE</code> • <code>S_MutingActive = FALSE</code> • <code>SafetyDemand = FALSE</code> • <code>ResetRequest = TRUE</code> • <code>Error = FALSE</code>
8802(*)	Safety Demand AOPD	<p>Safety demand detected by AOPD and muting is not active:</p> <ul style="list-style-type: none"> • <code>S_AOPD_Out = FALSE</code> • <code>S_MutingActive = FALSE</code> • <code>SafetyDemand = TRUE</code> • <code>ResetRequest = FALSE</code> • <code>Error = FALSE</code>
8402(*)	Wait for Reset	<p>Safety demand or errors have been detected and have been cleared. Operator acknowledgment by <code>Reset</code> required:</p> <ul style="list-style-type: none"> • <code>S_AOPD_Out = FALSE</code> • <code>S_MutingActive = FALSE</code> • <code>SafetyDemand = FALSE</code> • <code>ResetRequest = TRUE</code> • <code>Error = FALSE</code>

DiagCode	State Name	State Description and Output Settings
8002(*)	Safe	<p>Safety function activated (Active = TRUE):</p> <ul style="list-style-type: none"> • S_AOPD_Out = FALSE • S_MutingActive = FALSE • Error = FALSE
8010(*)	Muting Forward Start 1	<p>Muting forward sequence is in starting phase after rising trigger of MutingSwitch_11. Monitoring of DiscTime11_12 is activated. Monitoring of MaxMutingTime is activated:</p> <ul style="list-style-type: none"> • S_AOPD_Out = TRUE • S_MutingActive = FALSE • Error = FALSE
8310(*)	Muting Forward Start 2	<p>Muting forward sequence is in starting phase after rising trigger of MutingSwitch_12. Monitoring of DiscTime11_12 is activated. Monitoring of MaxMutingTime is activated:</p> <ul style="list-style-type: none"> • S_AOPD_Out = TRUE • S_MutingActive = FALSE • Error = FALSE
8020(*)	Muting Forward Active 1	<p>Muting forward sequence is activated by either:</p> <ul style="list-style-type: none"> • A rising trigger of the second of (MutingSwitch11 or MutingSwitch12). • Both MutingSwitch11 and MutingSwitch12 being actuated in the same cycle. <p>Monitoring of DiscTime11_12 is stopped. Monitoring of MaxMuting_Time is activated, if the transition comes directly from state 8000:</p> <ul style="list-style-type: none"> • S_AOPD_Out = TRUE • S_MutingActive = TRUE • SafetyDemand = FALSE • ResetRequest = FALSE • Error = FALSE
8030(*)	Muting Forward Step 1	<p>Muting forward sequence is active. MutingSwitch21 is the first exit switch activated. Monitoring of DiscTime21_22 is started:</p> <ul style="list-style-type: none"> • S_AOPD_Out = TRUE • S_MutingActive = TRUE • SafetyDemand = FALSE • ResetRequest = FALSE • Error = FALSE

DiagCode	State Name	State Description and Output Settings
8310(*)	Muting Forward Step 2	<p>Muting forward sequence is active. MutingSwitch22 is the first exit switch activated. Monitoring of DiscTime21_22 is started:</p> <ul style="list-style-type: none"> • S_AOPD_Out = TRUE • S_MutingActive = TRUE • SafetyDemand = FALSE • ResetRequest = FALSE • Error = FALSE
8040(*)	Muting Forward Active 2	<p>Muting forward sequence is still active. Both MutingSwitch21 and MutingSwitch22 are actuated. Monitoring of DiscTime21_22 is stopped:</p> <ul style="list-style-type: none"> • S_AOPD_Out = TRUE • S_MutingActive = TRUE • SafetyDemand = FALSE • ResetRequest = FALSE • Error = FALSE
8110(*)	Muting Backward Start 1	<p>Muting backward sequence is in starting phase after rising trigger of MutingSwitch_21. Monitoring of DiscTime21_22 is activated. Monitoring of MaxMutingTime is activated:</p> <ul style="list-style-type: none"> • S_AOPD_Out = TRUE • S_MutingActive = FALSE • SafetyDemand = FALSE • ResetRequest = FALSE • Error = FALSE
8410(*)	Muting Backward Start 2	<p>Muting backward sequence is in starting phase after rising trigger of MutingSwitch_22. Monitoring of DiscTime21_22 is activated. Monitoring of MaxMutingTime is activated:</p> <ul style="list-style-type: none"> • S_AOPD_Out = TRUE • S_MutingActive = FALSE • SafetyDemand = FALSE • ResetRequest = FALSE • Error = FALSE

DiagCode	State Name	State Description and Output Settings
8120(*)	Muting Backward Active 1	<p>Muting backward sequence is activated by either:</p> <ul style="list-style-type: none"> • A rising trigger of the second of (MutingSwitch21 or MutingSwitch22). • Both MutingSwitch21 and MutingSwitch22 being actuated in the same cycle. <p>Monitoring of DiscTime21_22 is stopped. Monitoring of MaxMuting_Time is activated, if the transition comes directly from state 8000:</p> <ul style="list-style-type: none"> • S_AOPD_Out = TRUE • S_MutingActive = TRUE • SafetyDemand = FALSE • ResetRequest = FALSE • Error = FALSE
8130(*)	Muting Backward Step 1	<p>Muting backward sequence is active. MutingSwitch11 is the first exit switch activated. Monitoring of DiscTime11_12 is started:</p> <ul style="list-style-type: none"> • S_AOPD_Out = TRUE • S_MutingActive = TRUE • Error = FALSE
8430(*)	Muting Backward Step 2	<p>Muting backward sequence is active. MutingSwitch12 is the first exit switch activated. Monitoring of DiscTime11_12 is started:</p> <ul style="list-style-type: none"> • S_AOPD_Out = TRUE • S_MutingActive = TRUE • SafetyDemand = FALSE • ResetRequest = FALSE • Error = FALSE
8140(*)	Muting Backward Active 2	<p>Muting backward sequence is still active. Both MutingSwitch11 and MutingSwitch12 are actuated. Monitoring of DiscTime11_12 is stopped:</p> <ul style="list-style-type: none"> • S_AOPD_Out = TRUE • S_MutingActive = TRUE • SafetyDemand = FALSE • ResetRequest = FALSE • Error = FALSE

S_MUTING_SEQ: Sequential Muting

What's in This Chapter

Description	172
-------------------	-----

Introduction

This chapter describes the S_MUTING_SEQ block.

Description

Muting

Muting is the intentional temporary suppression of the safety function implemented by an active optoelectronic protective device (AOPD), such as a light curtain, that guards against entry into a safety zone. Muting is intended to permit necessary materials – but not humans – to enter the safety zone without interrupting the work process. Two or more sensors, properly situated in the production sequence, can be used to trigger muting of the safety function. Sensors can be situated in parallel positions to operate simultaneously (parallel muting) or can be staggered to operate sequentially (sequential muting).

Muting sensors can be proximity switches, photoelectric barriers, limit switches, and so forth, which need not be failsafe. Indicator lights are used to indicate that muting is active.

WARNING

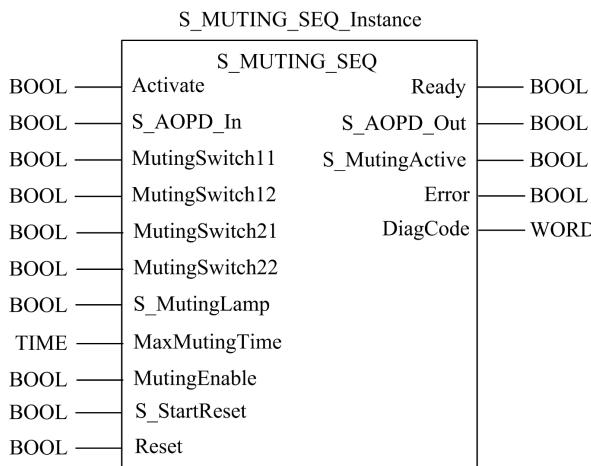
RISK OF UNINTENDED OPERATION

Activate the S_StartReset and S_AutoReset inputs only after you verify that no hazardous situation can occur if the system is started.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Function Description

Use the S_MUTING_SEQ function block to implement sequential muting of a safety process. This function block is designed to be used with four muting sensors. You can specify the maximum allowable time for completing the entire muting sequence (MaxMutingTime), beginning with the material's initial triggering of muting switches to its ultimate exit from the safety zone.


The block supports bi-directional (forward and backward) travel of material.

Muting is enabled by the MutingEnable signal, which is issued by the process control system. The S_MutingActive signal is set to TRUE to when the muting function is activated. The S_MutingLamp signal indicates if indicator lights are functioning while the muting function is active.

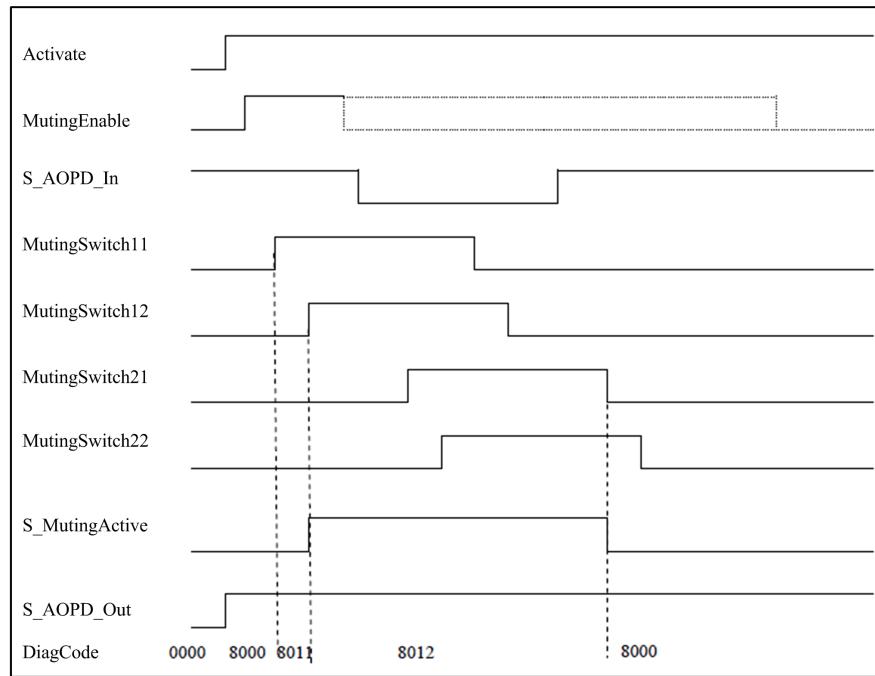
Upon expiration of the MaxMutingTime period, the muting function should be canceled and the S_MutingLamp signal set to false to indicate to the operator that the muting function is inactive.

Representation in FBD

Representation

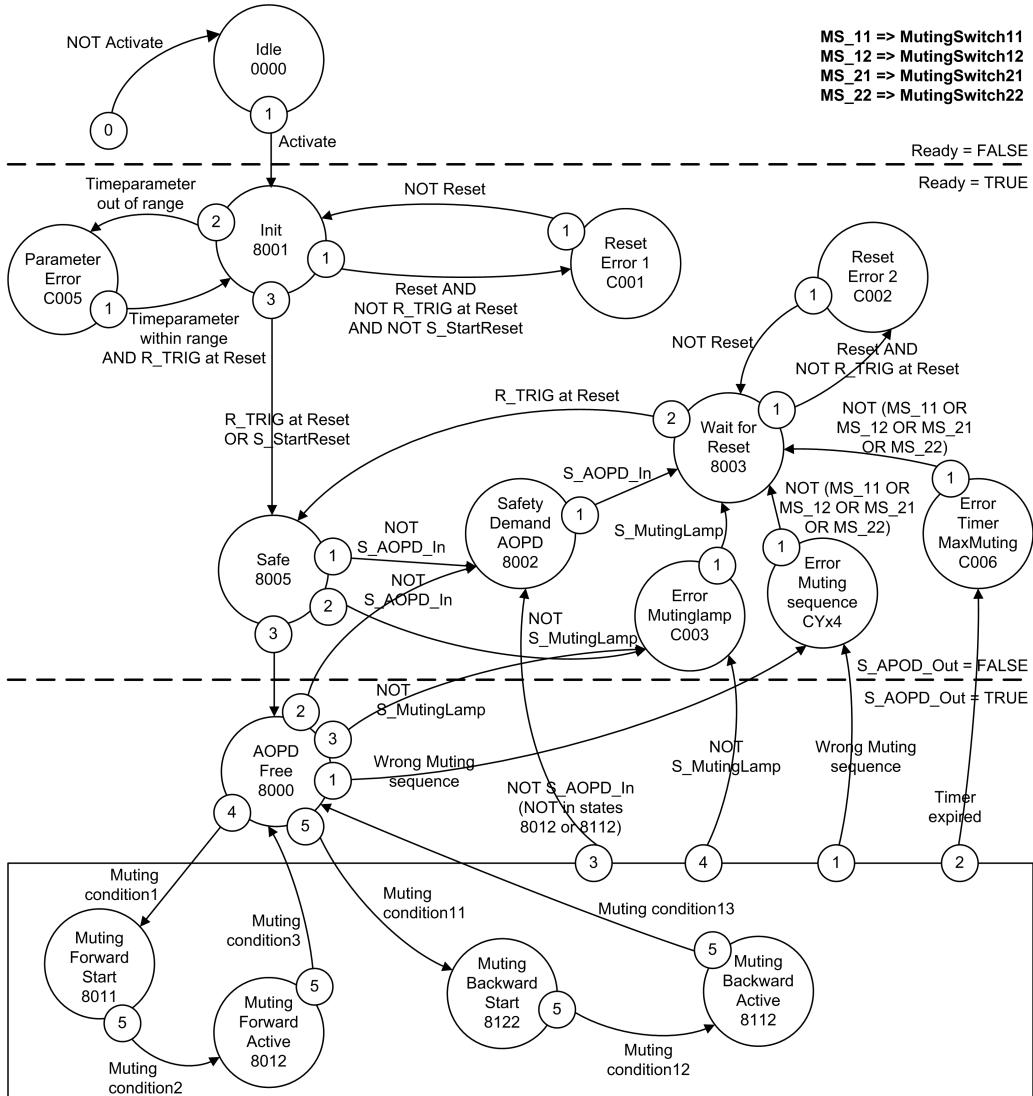
Input Parameters

Parameter	Data type	Init Value	Meaning
Activate	BOOL	FALSE	<p>The variable or constant value indicating activation state of the function block. This parameter can be connected to the variable, which represents the status (Active or Not Active) of the relevant safety device. This causes no irrelevant diagnostic information to be generated if a device is disabled:</p> <ul style="list-style-type: none"> When FALSE, all output variables are set to the initial values. Assign a static TRUE signal if no device is connected.
S_AOPD_In	BOOL	FALSE	<p>A variable input signal from an output signal switching device (OSSD), typically an output from an AOPD such as a light curtain:</p> <ul style="list-style-type: none"> FALSE: The protection field of the AOPD has been penetrated. TRUE: The protection field of the AOPD has not been penetrated.
MutingSwitch11	BOOL	FALSE	<p>The variable status of muting sensor 11:</p> <ul style="list-style-type: none"> FALSE: The sensor is not actuated. TRUE: The sensor is actuated.
MutingSwitch12	BOOL	FALSE	<p>The variable status of muting sensor 12:</p> <ul style="list-style-type: none"> FALSE: The sensor is not actuated. TRUE: The sensor is actuated.
MutingSwitch21	BOOL	FALSE	<p>The variable status of muting sensor 21:</p> <ul style="list-style-type: none"> FALSE: The sensor is not actuated. TRUE: The sensor is actuated.
MutingSwitch22	BOOL	FALSE	<p>The variable status of muting sensor 22:</p> <ul style="list-style-type: none"> FALSE: The sensor is not actuated. TRUE: The sensor is actuated.
S_MutingLamp	BOOL	FALSE	<p>The variable or constant value indicating the operational status of the muting lamp:</p> <ul style="list-style-type: none"> FALSE: The lamp is not functional. TRUE: The lamp is operating normally.
MaxMutingTime	TIME	T#0s	<p>The configurable maximum time, from 0 s...10 m, for completing a muting sequence, beginning when the first sensor is actuated.</p>
MutingEnable	BOOL	FALSE	<p>The variable or constant command, issued by the process control system, that enables or disables the muting function. After the function is enabled, it can be invoked as needed by the process control system:</p>


Parameter	Data type	Init Value	Meaning
			<ul style="list-style-type: none"> • FALSE: Muting is disabled. • TRUE: Muting is enabled.
S_StartReset	BOOL	FALSE	<p>A variable or constant value that indicates:</p> <ul style="list-style-type: none"> • FALSE: Manual reset when system is started (warm or cold). • TRUE: Automatic reset when system is started (warm or cold). <p>NOTE: Activate this function only after you have confirmed that no hazard can occur at the start of the PES. Use of the Automatic Circuit Reset feature of the function blocks requires implementation of other system or application measures to guard against unexpected (or unintended) start-up.</p>
Reset	BOOL	FALSE	<p>The variable value indicating reset of the state machine, coupled with detected error and status messages as indicated in the <code>DiagCode</code> parameter, after the underlying cause of the detected error has been removed. This behavior is designed as a detected error reset.</p> <p>NOTE: This function is only active on a signal change from FALSE to TRUE.</p>

Output Parameters

Parameter	Data type	Init Value	Meaning
Ready	BOOL	FALSE	<ul style="list-style-type: none"> • TRUE indicates that the function block is activated and the output results are valid (same as the POWER LED of a safety relay). • FALSE indicates the function block is not active and the program is not executed. <p>NOTE: This parameter can be useful in debug mode or to activate/deactivate additional function blocks, as well as for further processing in the functional program.</p>
S_AOPD_Out	BOOL	FALSE	<p>A safety related output that indicates the status of the muted output signal switching device (AOPD):</p> <ul style="list-style-type: none"> • FALSE: The AOPD protection field has been penetrated and muting is not enabled. • TRUE: The AOPD protection field has not been penetrated or muting is enabled.
S_MutingActive	BOOL	FALSE	<p>The status of the muting function:</p> <ul style="list-style-type: none"> • FALSE: Muting is disabled.


Parameter	Data type	Init Value	Meaning
			<ul style="list-style-type: none">• TRUE: Muting is enabled.
Error	BOOL	FALSE	Function block detected error message.
DiagCode	WORD	16#0000	Function block diagnostic message.

Typical Timing Diagram

State Diagram

The following diagram describes the state transitions of the S_MUTING_SEQ function block:

Source: PLCopen - Technical Committee 5, Safety Software, Technical Specification, Part 1: Concepts and Function Blocks, Version 1.0.

NOTE:

- The transition to the Idle state from any other state, occurring because Activate = FALSE, is not depicted. Such a transition has the highest priority (0).
- Within muting substates, transitions due to Error Muting sequence (priority 1), Error Timer (priority 2), Safety demand AOPD (priority 3) or Error Muting lamp (priority 4) have higher priority than transitions to Muting substates (priority 5).

Error Detection

The S_MUTING_SEQ block detects the following detected error conditions:

- `MaxMutingTime` has been set to a value less than 0 s or greater than 10 min.
- `S_MutingActive` has been equal to TRUE for a period that exceeds the maximum muting time (`MaxMutingTime`) setting.
- `Muting sensors` `MutingSwitch11`, `MutingSwitch12`, `MutingSwitch21`, and `MutingSwitch22` are activated in the incorrect sequence.
- A muting sequence begins without first being enabled by `MutingEnable`.
- A faulty muting lamp is indicated by `S_MutingLamp` = FALSE
- A static `Reset` condition is detected.

Detected Error Management

If an error is detected, the `S_AOPD_Out` and `S_MutingActive` outputs are set to FALSE. The `DiagCode` output indicates the relevant detected error code and the `Error` output is set to TRUE.

A restart is inhibited until the detected error conditions are cleared and the safe state is acknowledged using `Reset`.

When returning a detected error message, the `DiagCode` parameter can present one of the following detected error values

DiagCode	State Name	State Description and Output Settings
C001	Reset Error 1	<p>A static <code>Reset</code> condition is detected after function block activation:</p> <ul style="list-style-type: none"> • <code>S_AOPD_Out</code> = FALSE • <code>S_MutingActive</code> = FALSE • <code>Error</code> = TRUE
C002	Reset Error 2	<p>A static <code>Reset</code> condition is detected in state 8003:</p> <ul style="list-style-type: none"> • <code>S_AOPD_Out</code> = FALSE

DiagCode	State Name	State Description and Output Settings
		<ul style="list-style-type: none"> • <code>S_MutingActive</code> = FALSE • <code>Error</code> = TRUE
C003	Error Muting Lamp	<p>An error is detected in the muting lamp:</p> <ul style="list-style-type: none"> • <code>S_AOPD_Out</code> = FALSE • <code>S_MutingActive</code> = FALSE • <code>Error</code> = TRUE
CYx4	Error Muting Sequence	<p>An error is detected in a muting switch in one of the following states: 8000, 8011, 8012, 8112, or 8122:</p> <ul style="list-style-type: none"> • <code>S_AOPD_Out</code> = FALSE • <code>S_MutingActive</code> = FALSE • <code>Error</code> = TRUE <p>NOTE: In this DiagCode, "Y" and "x" have the following meanings:</p> <ul style="list-style-type: none"> • Y: Status in the sequence: <ul style="list-style-type: none"> ◦ 0: Error detected in state 8000 ◦ 1: Error detected in state Forward 8011 ◦ 2: Error detected in state Forward 8012 ◦ 3: Error detected in state Backward 8122 ◦ 4: Error detected in state Backward 80112 ◦ F: Muting enable missing • x: Identity of sensor where error detected. One of four bits: <ul style="list-style-type: none"> ◦ 0: muting switch 11 ◦ 1: muting switch 12 ◦ 2: muting switch 21 ◦ 3: muting switch 22
C005	Parameter Error	<p><code>MaxMutingTime</code> value out of range:</p> <ul style="list-style-type: none"> • <code>S_AOPD_Out</code> = FALSE • <code>S_MutingActive</code> = FALSE • <code>Error</code> = TRUE
C006	Error Timer MaxMuting	<p><code>S_MutingActive</code> has been active for longer than the <code>MaxMutingTime</code> setting:</p> <ul style="list-style-type: none"> • <code>S_AOPD_Out</code> = FALSE • <code>S_MutingActive</code> = FALSE • <code>Error</code> = TRUE

Diagnostic Codes Management

When returning a status message, the `Error` parameter is set to FALSE, and the `DiagCode` parameter displays one of the following hexadecimal values:

DiagCode	State Name	State Description and Output Settings
0	IDLE	The function block is not active (initial state): <ul style="list-style-type: none"> • <code>S_AOPD_Out</code> = FALSE • <code>S_MutingActive</code> = FALSE • <code>Error</code> = FALSE
8000	AOPD Free	Muting is not active and no safety demand from AOPD. If timers from a prior muting are still running, they are stopped: <ul style="list-style-type: none"> • <code>S_AOPD_Out</code> = TRUE • <code>S_MutingActive</code> = FALSE • <code>Error</code> = FALSE
8001	INIT	<code>Active</code> = TRUE: <ul style="list-style-type: none"> • <code>S_AOPD_Out</code> = FALSE • <code>S_MutingActive</code> = FALSE • <code>Error</code> = FALSE
8002	Safety Demand AOPD	Safety demand detected by AOPD and muting is not active: <ul style="list-style-type: none"> • <code>S_AOPD_Out</code> = FALSE • <code>S_MutingActive</code> = FALSE • <code>Error</code> = FALSE
8003	Wait for Reset	Safety demand or errors have been detected and have been cleared. Operator acknowledgment by <code>Reset</code> required: <ul style="list-style-type: none"> • <code>S_AOPD_Out</code> = FALSE • <code>S_MutingActive</code> = FALSE • <code>Error</code> = FALSE
8005	Safe	Safety function activated (<code>Active</code> = TRUE): <ul style="list-style-type: none"> • <code>S_AOPD_Out</code> = FALSE • <code>S_MutingActive</code> = FALSE • <code>Error</code> = FALSE
8011	Muting Forward Start	Muting forward sequence is in starting phase and no safety demand: <ul style="list-style-type: none"> • <code>S_AOPD_Out</code> = TRUE • <code>S_MutingActive</code> = FALSE • <code>Error</code> = FALSE
8012	Muting Forward Active	Muting forward sequence is active: <ul style="list-style-type: none"> • <code>S_AOPD_Out</code> = TRUE • <code>S_MutingActive</code> = TRUE • <code>Error</code> = FALSE

DiagCode	State Name	State Description and Output Settings
8112	Muting Backward Active	Muting backward sequence is active: <ul style="list-style-type: none">• <code>S_AOPD_Out = TRUE</code>• <code>S_MutingActive = TRUE</code>• <code>Error = FALSE</code>
8122	Muting Backward Start	Muting backward sequence is in starting phase and no safety demand: <ul style="list-style-type: none">• <code>S_AOPD_Out = TRUE</code>• <code>S_MutingActive = FALSE</code>• <code>Error = FALSE</code>

S_TWO_HAND_CONTROL_TYPE_II: Two Hand Control

What's in This Chapter

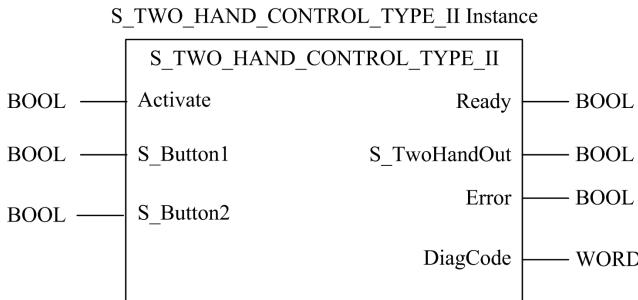
Description	182
-------------------	-----

Introduction

This chapter describes the S_TWO_HAND_CONTROL_TYPE_II block.

Description

Function Description

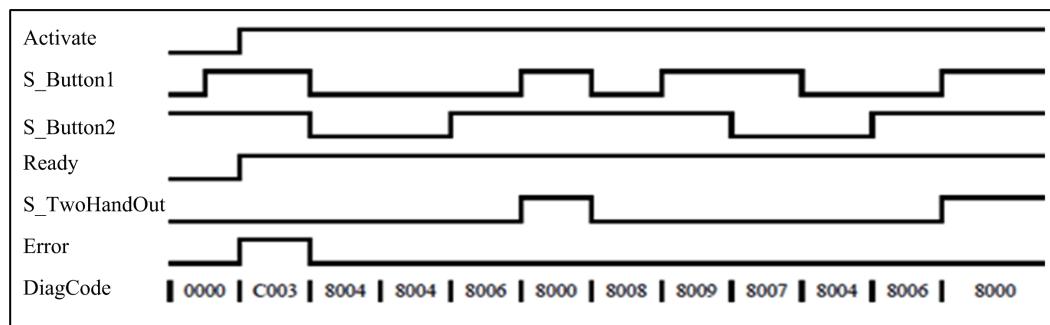

Use the S_TWO_HAND_CONTROL_TYPE_II function block to provide two-hand control functionality to a potentially dangerous manufacturing process. Two-hand control requires that each of the operator's hands be placed on a separate control button, thereby keeping them out of harms way.

When both control buttons are actuated (i.e. pressed down) the S_Button1 and S_Button2 parameters are set to TRUE. In this state, if the Error signal remains FALSE, the S_TwoHandOut output is set to TRUE, and machine operations may proceed.

This function block also controls the release of both buttons before again setting the S_TwoHandOut output to TRUE.

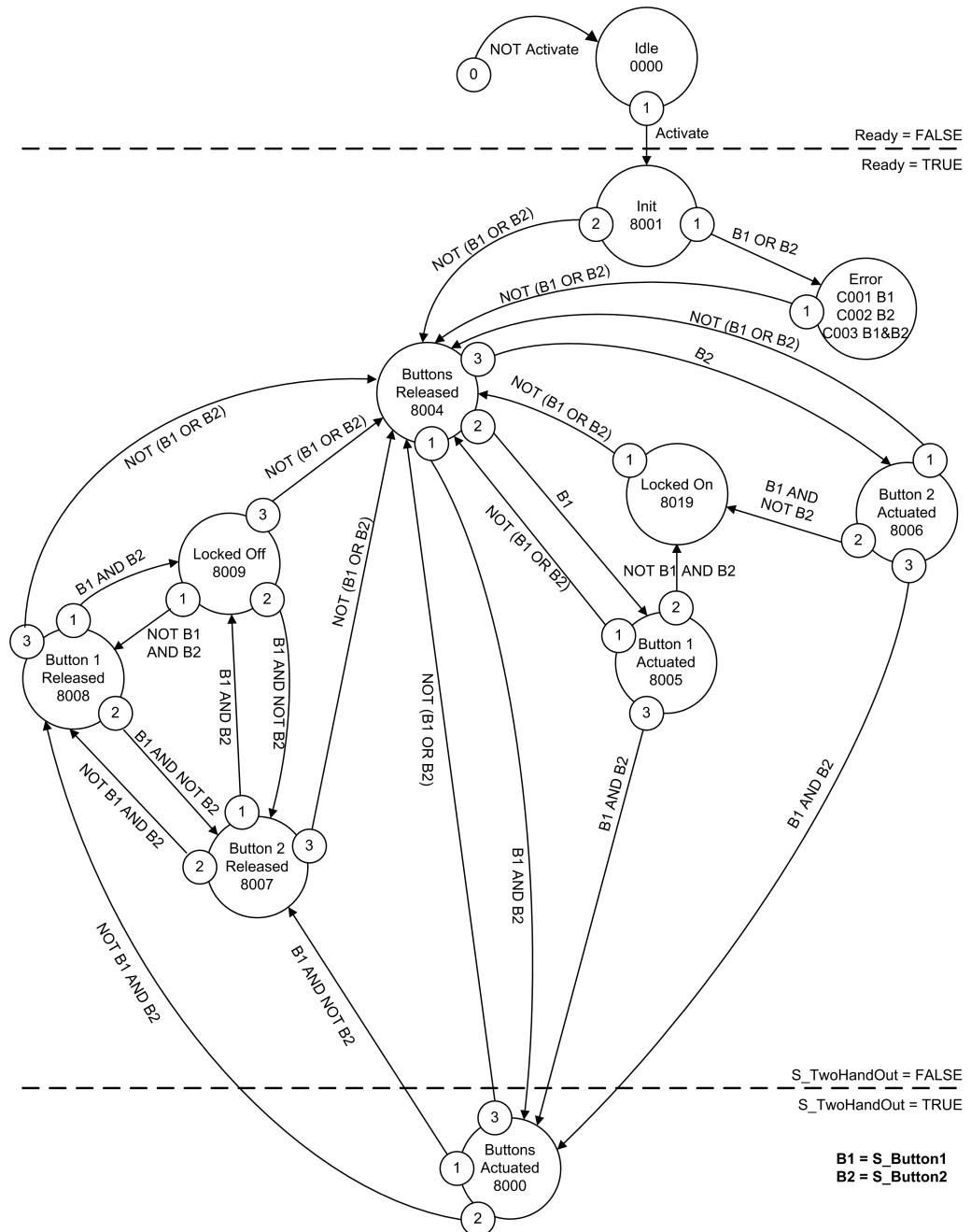
Representation in FBD

Representation


Input Parameters

Parameter	Data type	Init Value	Meaning
Activate	BOOL	FALSE	<p>The variable or constant value indicating activation state of the function block. This parameter can be connected to the variable, which represents the status (Active or Not Active) of the relevant safety device. This causes no irrelevant diagnostic information to be generated if a device is disabled:</p> <ul style="list-style-type: none"> When FALSE, all output variables are set to the initial values. Assign a static TRUE signal if no device is connected.
S_Button1	BOOL	FALSE	<p>The variable value of input button 1 (for category 3 or 4: two antivalent contacts):</p> <ul style="list-style-type: none"> FALSE: Button 1 released. TRUE: Button 1 actuated.
S_Button2	BOOL	FALSE	<p>The variable value of input button 2 (for category 3 or 4: two antivalent contacts):</p> <ul style="list-style-type: none"> FALSE: Button 2 released. TRUE: Button 2 actuated.

Output Parameters


Parameter	Data type	Init Value	Meaning
Ready	BOOL	FALSE	<ul style="list-style-type: none"> TRUE indicates that the function block is activated and the output results are valid (same as the POWER LED of a safety relay). FALSE indicates the function block is not active and the program is not executed. <p>NOTE: This parameter can be useful in debug mode or to activate/deactivate additional function blocks, as well as for further processing in the functional program.</p>
S_TwoHandOut	BOOL	FALSE	<p>Safety related output signal:</p> <ul style="list-style-type: none"> FALSE: Two hand operation is not enabled. TRUE: Both S_Button1 and S_Button2 inputs = TRUE; Error = FALSE. Two hand operation has been performed correctly.
Error	BOOL	FALSE	Function block detected error message.
DiagCode	WORD	16#0000	Function block diagnostic message.

Typical Timing Diagrams

State Diagram

The following diagram describes the state transitions of the S_TWO_HAND_CONTROL_TYPE_II function block:

Source: PLcopen - Technical Committee 5, Safety Software, Technical Specification, Part 1: Concepts and Function Blocks, Version 1.0.

NOTE: The transition to the Idle state from any other state, occurring because Activate = FALSE, is not depicted. Such a transition has the highest priority (0).

Error Detection

Upon activation of the function block, if either S_Button1 or S_Button2 is already set to TRUE, the condition is treated as an invalid input setting that causes an error to be detected.

Detected Error Management

When an error is detected, the output S_TwoHandOut is set to FALSE. The DiagCode parameter can present one of the following detected error values:

DiagCode	State Name	State Description and Output Settings
C001	Error B1	S_Button1 was TRUE on activation of the function block: <ul style="list-style-type: none"> S_TwoHandOut = FALSE Error = TRUE
C002	Error B2	S_Button2 was TRUE on activation of the function block: <ul style="list-style-type: none"> S_TwoHandOut = FALSE Error = TRUE
C003	Error B1&B2	Both S_Button1 and S_Button2 were TRUE on activation of the function block: <ul style="list-style-type: none"> S_TwoHandOut = FALSE Error = TRUE

The error state is exited when both buttons are released.

Diagnostic Codes Management

When returning a status message, the Error parameter is set to FALSE, and the DiagCode parameter displays one of the following hexadecimal values:

DiagCode	State Name	State Description and Output Settings
0	IDLE	The function block is not active (initial state): <ul style="list-style-type: none"> S_TwoHandOut = FALSE Error = FALSE
8000	Buttons Actuated	Both buttons actuated correctly:

DiagCode	State Name	State Description and Output Settings
		<ul style="list-style-type: none"> • S_TwoHandOut = TRUE • Error = FALSE
8001	INIT	Function block is active in the INIT state: <ul style="list-style-type: none"> • S_TwoHandOut = TRUE • Error = FALSE
8004	Buttons Released	No button is actuated: <ul style="list-style-type: none"> • S_TwoHandOut = FALSE • Error = FALSE
8005	Button 1 Actuated	Only Button 1 is actuated: <ul style="list-style-type: none"> • S_TwoHandOut = FALSE • Error = FALSE
8006	Button 2 Actuated	Only Button 2 is actuated: <ul style="list-style-type: none"> • S_TwoHandOut = FALSE • Error = FALSE
8007	Button 2 Released	The safety related output was enabled, but is now disabled. Both S_Button1 and S_Button2 were not set to FALSE after disabling the safety related output. In this state, S_Button1 is TRUE and S_Button2 is FALSE after disabling the safety related output: <ul style="list-style-type: none"> • S_TwoHandOut = FALSE • Error = FALSE
8008	Button 1 Released	The safety related output was enabled, but is now disabled. Both S_Button1 and S_Button2 were not set to FALSE after disabling the safety related output. In this state, S_Button1 is FALSE and S_Button2 is TRUE after disabling the safety related output: <ul style="list-style-type: none"> • S_TwoHandOut = FALSE • Error = FALSE
8009	Locked Off	The safety related output was enabled and is disabled again. Both S_Button1 and S_Button2 were not set to FALSE after disabling the safety related output. In this state, S_Button1 is TRUE and S_Button2 is TRUE after disabling the safety related output. <ul style="list-style-type: none"> • S_TwoHandOut = FALSE • Error = FALSE
8019	Locked On	Incorrect actuation of the buttons. Waiting for release of both buttons. <ul style="list-style-type: none"> • S_TwoHandOut = FALSE • Error = FALSE

S_TWO_HAND_CONTROL_TYPE_III: Two Hand Control with Timer

What's in This Chapter

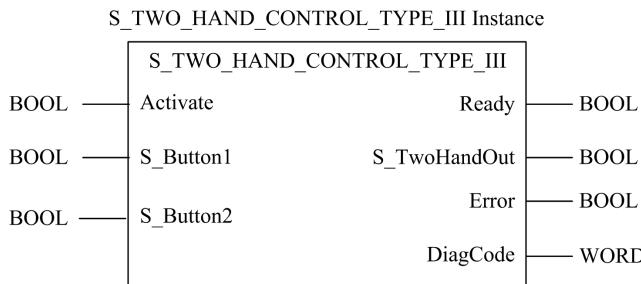
Description	189
-------------------	-----

Introduction

This chapter describes the S_TWO_HAND_CONTROL_TYPE_III block.

Description

Function Description

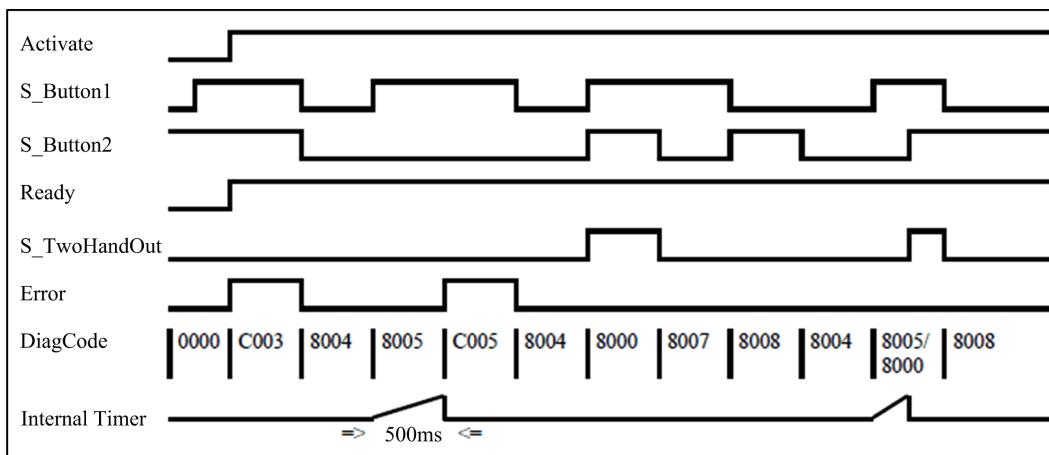

Use the S_TWO_HAND_CONTROL_TYPE_III function block to provide two-hand control functionality to a potentially dangerous manufacturing process. Two-hand control requires that each of the operator's hands be placed on a separate control button, thereby keeping them out of harms way.

When both control buttons are actuated (i.e. pressed down), the S_Button1 and S_Button2 parameters are set to TRUE. If S_Button1 and S_Button2 parameters are set to TRUE within 500 ms of each other and if the Error signal remains FALSE, the S_TwoHandOut output is set to TRUE, and machine operations may proceed.

This function block also controls the release of both buttons before again setting the S_TwoHandOut output to TRUE.

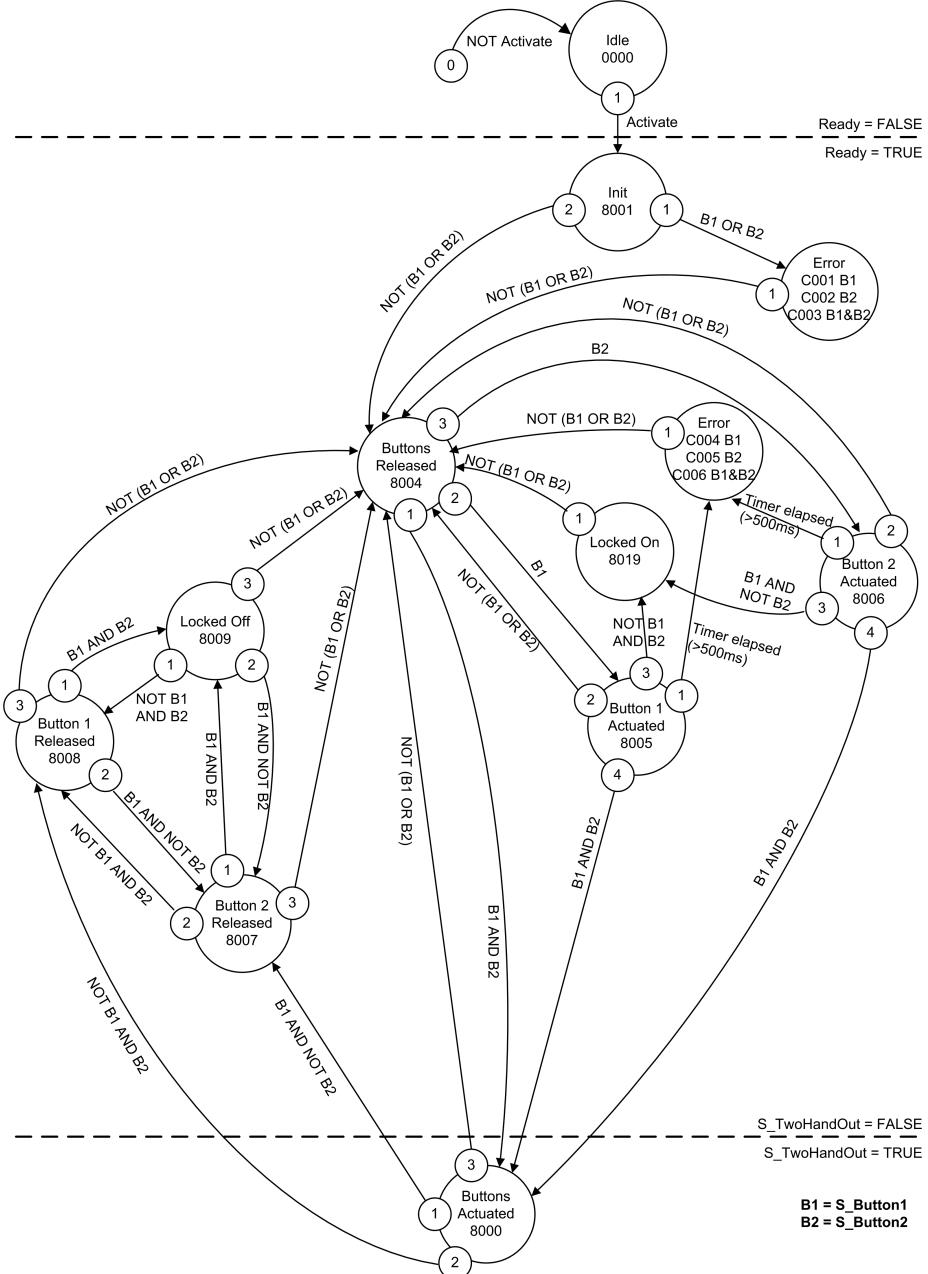
Representation in FBD

Representation


Input Parameters

Parameter	Data type	Init Value	Meaning
Activate	BOOL	FALSE	<p>The variable or constant value indicating activation state of the function block. This parameter can be connected to the variable, which represents the status (Active or Not Active) of the relevant safety device. This causes no irrelevant diagnostic information to be generated if a device is disabled:</p> <ul style="list-style-type: none"> When FALSE, all output variables are set to the initial values. Assign a static TRUE signal if no device is connected.
S_Button1	BOOL	FALSE	<p>The variable value of input button 1 (for category 3 or 4: two antivalent contacts):</p> <ul style="list-style-type: none"> FALSE: Button 1 released. TRUE: Button 1 actuated.
S_Button2	BOOL	FALSE	<p>The variable value of input button 2 (for category 3 or 4: two antivalent contacts):</p> <ul style="list-style-type: none"> FALSE: Button 2 released. TRUE: Button 2 actuated.

Output Parameters


Parameter	Data type	Init Value	Meaning
Ready	BOOL	FALSE	<ul style="list-style-type: none"> TRUE indicates that the function block is activated and the output results are valid (same as the POWER LED of a safety relay). FALSE indicates the function block is not active and the program is not executed. <p>NOTE: This parameter can be useful in debug mode or to activate/deactivate additional function blocks, as well as for further processing in the functional program.</p>
S_TwoHandOut	BOOL	FALSE	<p>Safety related output signal:</p> <ul style="list-style-type: none"> FALSE: Two hand operation is not enabled. TRUE: Both S_Button1 and S_Button2 inputs = TRUE within 500 ms; Error = FALSE. Two hand operation has been performed correctly.
Error	BOOL	FALSE	Function block detected error message.
DiagCode	WORD	16#0000	Function block diagnostic message.

Typical Timing Diagrams

State Diagram

The following diagram describes the state transitions of the S_TWO_HAND_CONTROL_TYPE_III function block:

Source: *PLCopen - Technical Committee 5, Safety Software, Technical Specification, Part 1: Concepts and Function Blocks, Version 1.0.*

NOTE: The transition to the Idle state from any other state, occurring because Activate = FALSE, is not depicted. Such a transition has the highest priority (0).

Error Detection

Upon activation of the function block:

- If either S_Button1 or S_Button2 is set to TRUE on block activation, the condition is treated as an invalid input that causes an error to be detected.
- If the elapsed time between the actuation of S_Button1 and S_Button2 is ≥ 500 ms, an error is detected.

Detected Error Management

When an error is detected, the output S_TwoHandOut is set to FALSE. The DiagCode parameter can present one of the following detected error values:

DiagCode	State Name	State Description and Output Settings
C001	Error B1	S_Button1 was TRUE on activation of the function block: <ul style="list-style-type: none">• S_TwoHandOut = FALSE• Error = TRUE
C002	Error B2	S_Button2 was TRUE on activation of the function block: <ul style="list-style-type: none">• S_TwoHandOut = FALSE• Error = TRUE
C003	Error B1&B2	Both S_Button1 and S_Button2 were TRUE on activation of the function block: <ul style="list-style-type: none">• S_TwoHandOut = FALSE• Error = TRUE
C004	Error 2 B1	S_Button1 was FALSE and S_Button2 was TRUE after 500 ms in state 8005: <ul style="list-style-type: none">• S_TwoHandOut = FALSE• Error = TRUE

DiagCode	State Name	State Description and Output Settings
C005	Error 2 B2	<p><code>S_Button1</code> was TRUE and <code>S_Button2</code> was FALSE after 500 ms in state 8005:</p> <ul style="list-style-type: none"> <code>S_TwoHandOut</code> = FALSE <code>Error</code> = TRUE
C006	Error 2 B1&B2	<p>Both <code>S_Button1</code> and <code>S_Button2</code> were TRUE after 500 ms in state 8005 or 8006. This state is possible only if the states of the inputs (<code>S_Button1</code> and <code>S_Button2</code>) change from divergent to convergent (both TRUE) simultaneously when the timer elapses (500 ms) at the same cycle:</p> <ul style="list-style-type: none"> <code>S_TwoHandOut</code> = FALSE <code>Error</code> = TRUE

The error state is exited when both buttons are released.

Diagnostic Codes Management

When returning a status message, the `Error` parameter is set to FALSE, and the `DiagCode` parameter displays one of the following hexadecimal values:

DiagCode	State Name	State Description and Output Settings
0	IDLE	<p>The function block is not active (initial state):</p> <ul style="list-style-type: none"> <code>S_TwoHandOut</code> = FALSE <code>Error</code> = FALSE
8000	Buttons Actuated	<p>Both buttons actuated correctly:</p> <ul style="list-style-type: none"> <code>S_TwoHandOut</code> = TRUE <code>Error</code> = FALSE
8001	INIT	<p>Function block is active in the INIT state:</p> <ul style="list-style-type: none"> <code>S_TwoHandOut</code> = FALSE <code>Error</code> = FALSE
8004	Buttons Released	<p>No button is actuated:</p> <ul style="list-style-type: none"> <code>S_TwoHandOut</code> = FALSE <code>Error</code> = FALSE
8005	Button 1 Actuated	<p>Only Button 1 is actuated. Internal timer starts:</p> <ul style="list-style-type: none"> <code>S_TwoHandOut</code> = FALSE <code>Error</code> = FALSE
8006	Button 2 Actuated	<p>Only Button 2 is actuated. Internal timer starts:</p> <ul style="list-style-type: none"> <code>S_TwoHandOut</code> = FALSE <code>Error</code> = FALSE

DiagCode	State Name	State Description and Output Settings
8007	Button 2 Released	<p>The safety related output was enabled, but is now disabled. Both <code>S_Button1</code> and <code>S_Button2</code> were not set to FALSE after disabling the safety related output. In this state, <code>S_Button1</code> is TRUE and <code>S_Button2</code> is FALSE after disabling the safety related output:</p> <ul style="list-style-type: none"> • <code>S_TwoHandOut</code> = FALSE • <code>Error</code> = FALSE
8008	Button 1 Released	<p>The safety related output was enabled, but is now disabled. Both <code>S_Button1</code> and <code>S_Button2</code> were not set to FALSE after disabling the safety related output. In this state, <code>S_Button1</code> is FALSE and <code>S_Button2</code> is TRUE after disabling the safety related output:</p> <ul style="list-style-type: none"> • <code>S_TwoHandOut</code> = FALSE • <code>Error</code> = FALSE
8009	Locked Off	<p>The safety related output was enabled and is disabled again. Both <code>S_Button1</code> and <code>S_Button2</code> were not set to FALSE after disabling the safety related output. In this state, <code>S_Button1</code> is TRUE and <code>S_Button2</code> is TRUE after disabling the safety related output.</p> <ul style="list-style-type: none"> • <code>S_TwoHandOut</code> = FALSE • <code>Error</code> = FALSE
8019	Locked On	<p>Incorrect actuation of the buttons. Waiting for release of both buttons.</p> <ul style="list-style-type: none"> • <code>S_TwoHandOut</code> = FALSE • <code>Error</code> = FALSE

High Availability

What's in This Part

S_AIHA: High Availability for Mx80 Safety Analog Inputs.....	198
S_DIHA: High Availability for Mx80 Safety Digital Inputs	202

Introduction

This section describes the elementary functions and elementary function blocks of the **High Availability family**.

S_AIHA: High Availability for Mx80 Safety Analog Inputs

What's in This Chapter

Description	198
-------------------	-----

Introduction

This chapter describes the S_AIHA block.

Description

Function Description

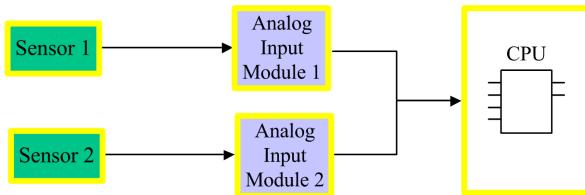
Use the S_AIHA function block in high-availability architectures with redundant BMXSAI0410 safety analog input modules. It continuously compares the integrity of the two channels stemming from the two safety analog input modules and selects the data to be retrieved based on that comparison.

WARNING

LOSS OF THE SAFETY INTEGRITY LEVEL

Code that includes the S_AIHA function block must be certified in accordance with IEC61508 before it is used in operation.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

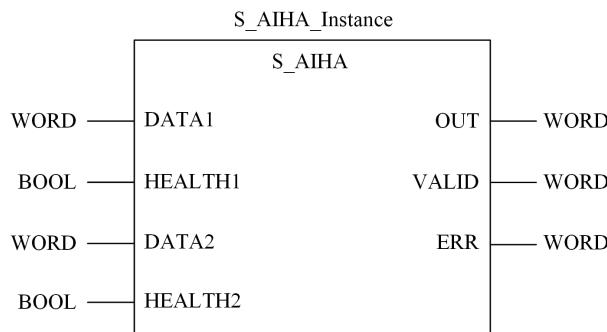

NOTE: The S_AIHA function block is a modifiable template. You can edit the block structure to meet your application requirements. This block is not certified by the TÜV Rheinland Group.

High-Availability Architecture

To improve availability by using the S_AIHA safety function block, follow these design rules:

- Use two sensors.
- Connect each sensor to a separate input point.
- Each input point should be located on a different analog input module.

Architecture example:



In this design, one safety analog input module processes the signal from Sensor 1, while a second safety analog input module processes the signal from Sensor 2. The CPU uses the S_AIHA block to select between the data provided by the two channels.

EN and ENO can be configured as additional parameters.

Representation in FBD

Representation

Input Parameters

The function block retrieves the data and the health information out of each safety analog input module.

Input parameters:

Parameter	Data Type	Meaning
DATA1	WORD	Data of analog input module 1.
HEALTH1	BOOL	The health state of the communication channel to module 1: <ul style="list-style-type: none"> • 1: Channel is operational. • 0: Channel is not operational.
DATA2	WORD	Data of analog input module 2.
HEALTH2	BOOL	The health state of the communication channel to module 2: <ul style="list-style-type: none"> • 1: Channel is operational. • 0: Channel is not operational.

Output Parameters

Output parameter s:

Parameter	Data Type	Meaning
OUT	WORD	The output data returned by the S_AIHA function block. It will contain the following: <ul style="list-style-type: none"> • DATA1 data, if HEALTH1 = 1. • DATA2 data, if HEALTH1 = 0 and HEALTH2 = 1. • 0 (the safe state) if both HEALTH1 and HEALTH2 = 0.
VALID	WORD	Validity of the output data provided by the OUT parameter: <ul style="list-style-type: none"> • 1: Output data is valid. • 0: Output data is not valid. Refer to the State Table, below.
ERR	WORD	The detected error state of the two safety input modules: <ul style="list-style-type: none"> • 0: Both modules are OK. • 1: Module 2 is OK; module 1 has a detected error. • 2: Module 1 is OK; module 2 has a detected error. • 3: Errors have been detected in both module 1 and module 2.

State Table

The combinations of parameters of the S_AIHA block are explained, below:

HEALTH1	HEALTH2	OUT	VALID	ERR	Remark
0	0	0	0	Module 1 channel detected error. Module 2 channel detected error.	Safe state
0	1	DATA2	1	Module 1 channel detected error.	Use value of module 2 channel.
1	0	DATA1	1	Module 2 channel detected error.	Use value of module 1 channel.
1	1	DATA1	1	Channels on both modules are OK.	Use value of module 1 channel.

S_DIHA: High Availability for Mx80 Safety Digital Inputs

What's in This Chapter

Description	202
-------------------	-----

Introduction

This chapter describes the S_DIHA block.

Description

Function Description

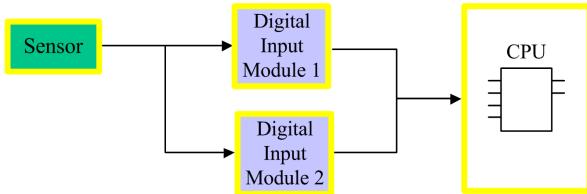
Use the S_DIHA function block in high-availability architectures with redundant BMXSDI1602 safety digital input modules. It continuously compares the integrity of the two channels stemming from the two safety digital input modules and selects the data to be retrieved based on that comparison.

⚠ WARNING

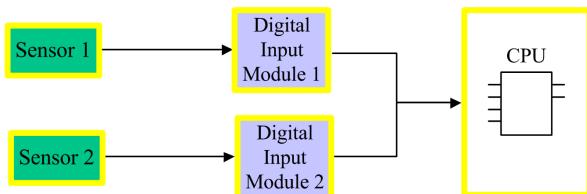
LOSS OF THE SAFETY INTEGRITY LEVEL

Code that includes the S_DIHA function block must be certified in accordance with IEC61508 before it is used in operation.

Failure to follow these instructions can result in death, serious injury, or equipment damage.


NOTE: The S_DIHA function block is a modifiable template. You can edit the block structure to meet your application requirements. This block is not certified by the TÜV Rheinland Group.

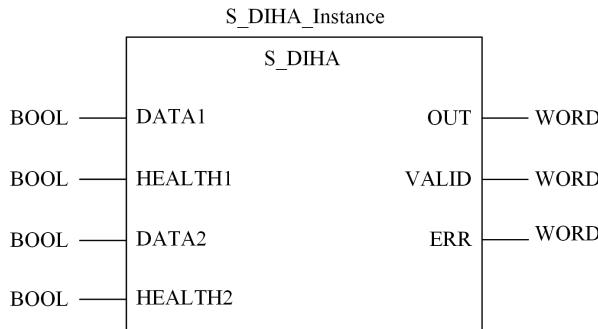
High-Availability Architecture


To improve availability by using the S_DIHA safety function block, follow these design rules:

- Use either one or two sensors.
- Use two separate input points:
 - If using one sensor, connect the sensor to both input points.
 - If using two sensors, connect each sensor to a different input point.
- Each input point should be located on a different digital input module.

Architecture example using a single sensor:

Architecture example using two sensors:


In these designs, either one or two sensors is used. The two input points are located on different digital input modules, which processes the signal received from the connected sensor. The CPU uses the `S_DIHA` block to select between the data provided by the two channels.

NOTE: If a single sensor is used, the two digital input modules can share the same process power supply.

`EN` and `ENO` can be configured as additional parameters.

Representation in FBD

Representation

Input Parameters

The function block retrieves the data and the health information out of each safety digital input module.

Input parameters:

Parameter	Data Type	Meaning
DATA1	BOOL	Data of digital input module 1.
HEALTH1	BOOL	The health state of the communication channel to module 1: <ul style="list-style-type: none">• 1: Channel is operational.• 0: Channel is not operational.
DATA2	BOOL	Data of digital input module 2.
HEALTH2	BOOL	The health state of the communication channel to module 2: <ul style="list-style-type: none">• 1: Channel is operational.• 0: Channel is not operational.

Output Parameters

Output parameter s:

Parameter	Data Type	Meaning
OUT	BOOL	<p>The output data returned by the S_DIHA function block. It will contain the following:</p> <ul style="list-style-type: none"> • DATA1 data, if HEALTH1 = 1. • DATA2 data, if HEALTH1 = 0 and HEALTH2 = 1. • 0 (the safe state) if both HEALTH1 and HEALTH2 = 0.
VALID	WORD	<p>Validity of the output data provided by the OUT parameter:</p> <ul style="list-style-type: none"> • 1: Output data is valid. • 0: Output data is not valid. <p>Refer to the State Table, below.</p>
ERR	WORD	<p>The detected error state of the two safety input modules:</p> <ul style="list-style-type: none"> • 0: Both modules are OK. • 1: Module 2 is OK; module 1 has a detected error. • 2: Module 1 is OK; module 2 has a detected error. • 3: Errors have been detected in both module 1 and module 2. • 4: A discrepancy of input data exists. • 5: A discrepancy of input data exists, and module 1 has a detected error. • 6: A discrepancy of input data exists, and module 2 has a detected error. • 7: A discrepancy of input data exists, and both module 1 and module 2 have detected errors.

State Table

The combinations of parameters of the S_DIHA block are explained, below:

DATA1	HEALTH1	DATA2	HEALTH2	OUT	VALID	ERR	Remark
0	0	0	0	0	0	Mod 1 + Mod 2 detected error.	Safe state. ¹
0	0	0	1	0	1	Mod 1 detected error.	Use Mod 2 value. ²
0	0	1	0	0	0	Mod 1 + Mod 2 detected error.	Safe state. ¹
0	0	1	1	1	1	Mod 1 detected error.	Use Mod 2 value. ²
0	1	0	0	0	1	Mod 2 detected error.	Use Mod 1 value. ²
0	1	0	1	0	1	OK	Consistent values. ³
0	1	1	0	0	1	Mod 2 detected error.	Use Mod 1 value. ²

DATA1	HEALTH1	DATA2	HEALTH2	OUT	VALID	ERR	Remark
0	1	1	1	0	1	Discrepancy	Use Mod 1 value. ³
1	0	0	0	0	0	Mod 1 + Mod 2 detected error.	Safe state. ¹
1	0	0	1	0	1	Mod 1 detected error.	Use Mod 2 value. ²
1	0	1	0	0	0	Mod 1 + Mod 2 detected error.	Safe state. ¹
1	0	1	1	1	1	Mod 1 detected error.	Use Mod 2 value. ²
1	1	0	0	1	1	Mod 2 detected error.	Use Mod 1 value. ²
1	1	0	1	1	1	Discrepancy	Use Mod 1 value. ³
1	1	1	0	1	1	Mod 2 detected error.	Use Mod 1 value. ²
1	1	1	1	1	1	OK	Consistent. ³

1. The value of the input is set to 0 (safe state) because both modules have a detected error. The PAC is still running using 0 for the input. Repair or replace the modules.
 2. An error has been detected in one of the modules. The value from the other module is used. Repair or replace the module with the detected error.
 3. Both modules are healthy. If a discrepancy is detected, this condition can be handled programmatically, if desired.

Logic

What's in This Part

S_AND_***: AND Function	208
S_F_TRIG: Falling Edge Detection.....	210
S_NOT_***: Negation.....	212
S_OR_***: OR Function	214
S_R_TRIG: Rising Edge Detection.....	216
S_ROL_***: Rotate Left.....	218
S_ROR_***: Rotate Right	221
S_RS: Bistable Function Block, Reset Dominant	224
S_SHL_***: Shift Left	226
S_SHR_***: Shift Right.....	229
S_SR: Bistable Function Block, Set Dominant.....	232
S_XOR_***: Exclusive OR Function	234

Introduction

This section describes the elementary functions and elementary function blocks of the `Logic` family.

S_AND_***: AND Function

What's in This Chapter

Description	208
-------------------	-----

Introduction

This chapter describes the S_AND_*** block.

Description

Function Description

The function for a bit-by-bit AND link of the bit sequences at the inputs and assigns the result to the output.

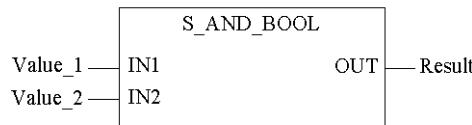
Confirm that the data types of all input values and output values are identical.

The number of inputs can be increased to a maximum of 32.

EN and ENO can be configured as additional parameters.

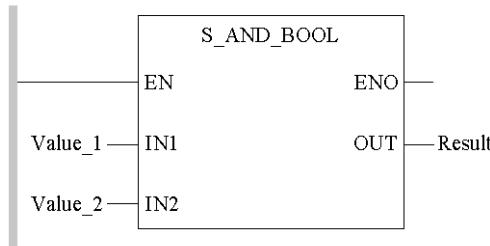
Formula

$$\text{OUT} = \text{IN1} \ \& \ \text{IN2} \ \& \ \dots \ \& \ \text{INn}$$


Available Functions

List of available functions

- S_AND_BOOL
- S_AND_BYTE
- S_AND_WORD
- S_AND_DWORD


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
Value_1	BOOL, BYTE, WORD, DWORD	input bit sequence
Value_2	BOOL, BYTE, WORD, DWORD	input bit sequence
Value_n	BOOL, BYTE, WORD, DWORD	input bit sequence (n = max. 32)

Description of the output parameter

Parameter	Data Type	Meaning
Result	BOOL, BYTE, WORD, DWORD	output bit sequence

S_F_TRIG: Falling Edge Detection

What's in This Chapter

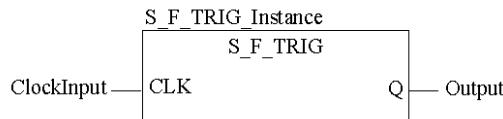
Description	210
-------------------	-----

Introduction

This chapter describes the S_F_TRIG block.

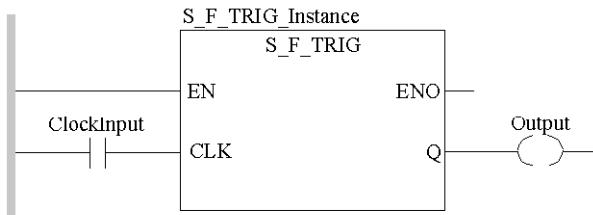
Description

Function Description


This function block is used for the detection of falling edges 1 \rightarrow 0.

Output Q becomes 1 if there is a transition from 1 to 0 at the CLK input. The output will remain at 1 from one function block execution to the next; the output subsequently returns to 0.

EN and ENO can be configured as additional parameters.


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
CLK	BOOL	clock input

Description of the output parameter

Parameter	Data Type	Meaning
Q	BOOL	output

S_NOT_***: Negation

What's in This Chapter

Description	212
-------------------	-----

Introduction

This chapter describes the S_NOT_*** block.

Description

Function Description

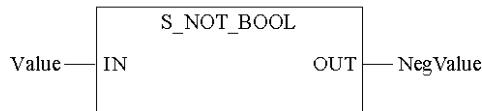
The function negates the input bit sequence bit-by-bit and assigns the result to the output.

Confirm that the data types of all input values and output values are identical.

EN and ENO can be configured as additional parameters.

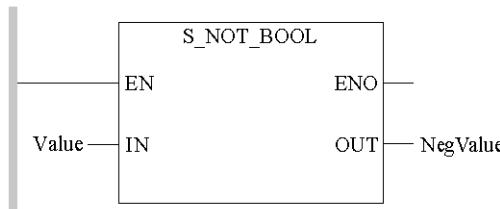
Formula

$$\text{OUT} = \text{NOT IN}$$


Available Functions

List of available functions

- S_NOT_BOOL
- S_NOT_BYTE
- S_NOT_WORD
- S_NOT_DWORD


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
Value	BOOL, BYTE, WORD, DWORD	input bit sequence

Description of the output parameter

Parameter	Data Type	Meaning
NegValue	BOOL, BYTE, WORD, DWORD	negated bit sequence

S_OR_***: OR Function

What's in This Chapter

Description	214
-------------------	-----

Introduction

This chapter describes the S_OR_*** block.

Description

Function Description

The function logically ORs each input with the next input until the total number of inputs have been OR'ed together.

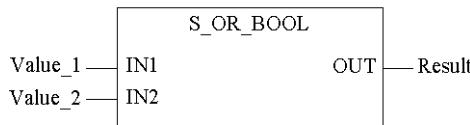
Confirm that the data types of all input values and output values are identical.

The number of inputs can be increased to a maximum of 32.

EN and ENO can be configured as additional parameters.

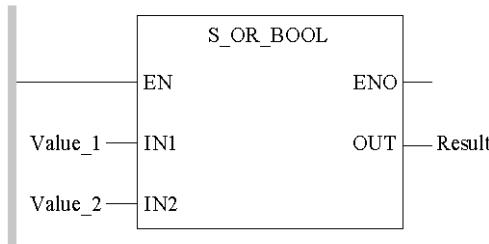
Formula

$$\text{OUT} = \text{IN1 OR IN2 OR ... OR IN}_n$$


Available Functions

List of available functions

- S_OR_BOOL
- S_OR_BYTE
- S_OR_WORD
- S_OR_DWORD


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
Value_1	BOOL, BYTE, WORD, DWORD	input bit sequence
Value_2	BOOL, BYTE, WORD, DWORD	input bit sequence
Value_n	BOOL, BYTE, WORD, DWORD	input bit sequence n = max. 32

Description of the output parameter

Parameter	Data Type	Meaning
Result	BOOL, BYTE, WORD, DWORD	output bit sequence

S_R_TRIG: Rising Edge Detection

What's in This Chapter

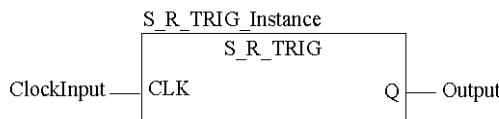
Description	216
-------------------	-----

Introduction

This chapter describes the S_R_TRIG block.

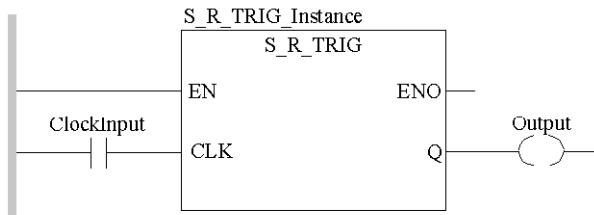
Description

Function Description


This function block is used for the detection of rising edges 0 -> 1.

Output Q becomes 1 if there is a transition from 0 to 1 at the CLK input. The output remains at 1 from one function block execution to the next (one cycle); the output subsequently returns to 0.

EN and ENO can be configured as additional parameters.


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
CLK	BOOL	clock input

Description of the output parameter

Parameter	Data Type	Meaning
Q	BOOL	output

S_ROL_***: Rotate Left

What's in This Chapter

Description	218
-------------------	-----

Introduction

This chapter describes the S_ROL_*** block.

Description

Function Description

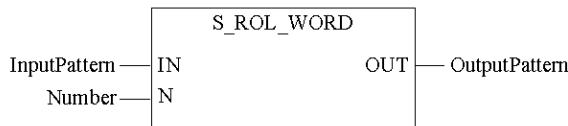
This function rotates the bit pattern at the `IN` input circularly to the left by `n` bits (value at input `Number`).

System bit %S17 is used as CARRY bit, i.e. the status of the bit that is shifted out is stored there.

Confirm that the data types of the `IN` input and `OUT` output are identical.

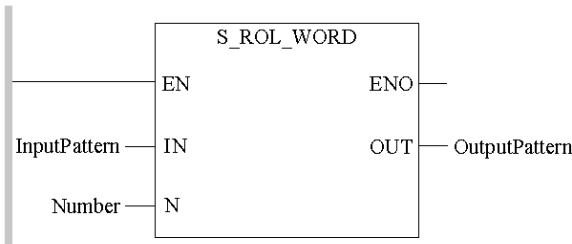
NOTE: Because of IEC 61131-3 conformity, this function also works with the `BOOL` data type. This is not significant here.

`EN` and `ENO` can be configured as additional parameters.


Available Functions

List of available functions

- S_ROL_BOOL
- S_ROL_BYTE
- S_ROL_WORD
- S_ROL_DWORD


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
InputPattern	BOOL, BYTE, WORD, DWORD	<p>This is the bit pattern to be rotated.</p> <p>For example:</p> <p>InputPattern=2#010000011110001</p>
Number	UINT	<p>This is the number of spaces to be rotated.</p> <p>Example:</p> <p>number = 4</p>

Description of the output parameter

Parameter	Data Type	Meaning
OutputPattern	BOOL, BYTE, WORD, DWORD	<p>This is the rotated bit pattern.</p> <p>For example:</p> <p>With the data from the previous table, the result is:</p> <p>RotatedPattern=2#0000111100010100</p>

Function Block Behavior

The maximum number of rotation should be less or equal to the size of the operand:

- for `BYTE`, the maximum number of rotations is 8.
- for `WORD` and `INT`, the maximum number of rotations is 16.
- for `DWORD` and `DINT`, the maximum number of rotations is 32.

The table below gives the output value of the rotate function block depending on the number of rotations and the size of the operand:

Type	Number of rotations	Output value	%S17
BYTE	0	= Input value	0
	1...31	= Rotated input value	MSB
	>31	= 0	0
WORD/INT	0	= Input value	0
	1...16	= Rotated input value	MSB
	17...31	= Incorrect value	.. (1)
	>31	= 0	0
DWORD/DINT	0	= Input value	0
	1...32	= Rotated input value	MSB
	>32	= 0	0
(1) unpredictable			

S_ROR_***: Rotate Right

What's in This Chapter

Description	221
-------------------	-----

Introduction

This chapter describes the S_ROR_*** block.

Description

Function Description

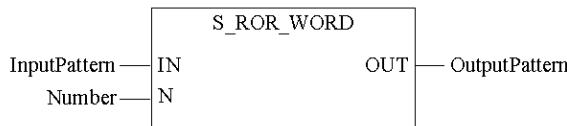
This function rotates the bit pattern at the `In` input circularly to the right by `n` bits (value at input `Number`).

System bit %S17 is used as CARRY bit, i.e. the status of the bit that is shifted out is stored there.

Confirm that the data types of the `IN` input and `OUT` output are identical.

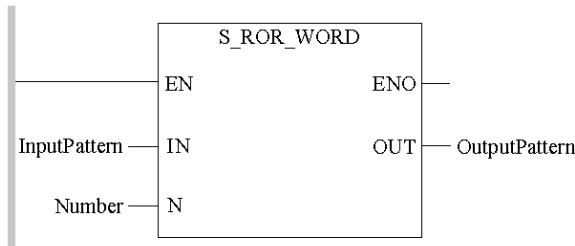
NOTE: Because of IEC 61131-3 conformity, this function also works with the `BOOL` data type. This is not significant here.

`EN` and `ENO` can be configured as additional parameters.


Available Functions

List of available functions

- S_ROR_BOOL
- S_ROR_BYTE
- S_ROR_WORD
- S_ROR_DWORD


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
InputPattern	BOOL, BYTE, WORD, DWORD	<p>This is the bit pattern to be rotated.</p> <p>For example:</p> <p>InputPattern=2#0100000011110001</p>
Number	UINT	<p>This is the number of spaces to be rotated.</p> <p>Example:</p> <p>number = 4</p>

Description of the output parameter

Parameter	Data Type	Meaning
OutputPattern	BOOL, BYTE, WORD, DWORD	<p>This is the rotated bit pattern.</p> <p>For example:</p> <p>With the data from the previous table, the result is</p> <p>RotatedPattern=2#000101000001111</p>

S_RS: Bistable Function Block, Reset Dominant

What's in This Chapter

Description	224
-------------------	-----

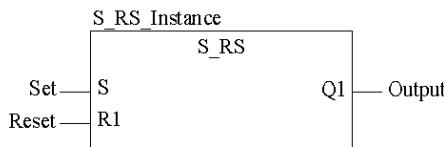
Introduction

This chapter describes the S_RS block.

Description

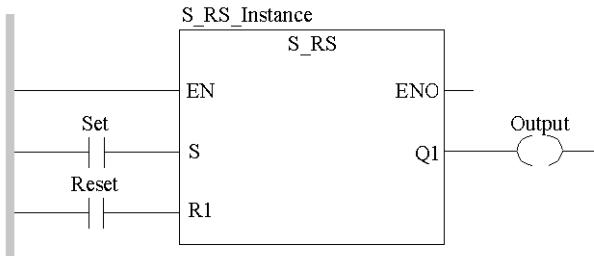
Function Description

The function block is used as RS memory with the property "Reset dominant".


Output Q1 becomes 1 when the S input becomes 1. This state remains even if input S reverts back to 0. Output Q1 changes back to 0 when input R1 becomes 1. If the inputs S and R1 are 1 simultaneously, the dominating input R1 will set the output Q1 to 0.

When the function block is called for the first time, the initial state of Q1 is 0.

EN and ENO can be configured as additional parameters.


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
S	BOOL	set
R1	BOOL	reset (dominant)

Description of the output parameter

Parameter	Data Type	Meaning
Q1	BOOL	output

S_SHL_***: Shift Left

What's in This Chapter

Description	226
-------------------	-----

Introduction

This chapter describes the S_SHL_*** block.

Description

Function Description

This function shifts the bit pattern at the `IN` input to the left by `n` bits (value at input `N`).

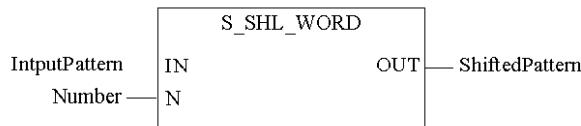
System bit `%S17` is used as CARRY bit, i.e. the status of the bit that is shifted out is stored there.

Zeros are filled in from the right.

Confirm that the data types of the `IN` input and `OUT` output are identical.

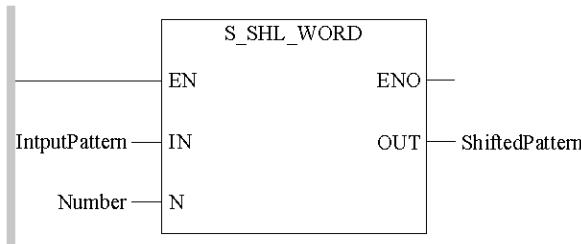
NOTE: Because of IEC 61131-3 conformity, this function also works with the `BOOL` data type. This is not significant here.

`EN` and `ENO` can be configured as additional parameters.


Available Functions

List of available functions

- S_SHL_BOOL
- S_SHL_BYTE
- S_SHL_WORD
- S_SHL_DWORD


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
InputPattern	BOOL, BYTE, WORD, DWORD	<p>This is the bit pattern to be shifted.</p> <p>For example</p> <p>InputPattern = 2#010000011110001.</p>
Number	UINT	<p>This is the number of spaces to be shifted.</p> <p>For example</p> <p>Number = 4.</p>

Description of the output parameter

Parameter	Data Type	Meaning
ShiftedPattern	BOOL, BYTE, WORD, DWORD	<p>This is the bit pattern to be shifted.</p> <p>For example</p> <p>With the data from the previous table, the result is</p> <p>ShiftedPattern = 2#0000111100010000</p>

S_SHR_***: Shift Right

What's in This Chapter

Description	229
-------------------	-----

Introduction

This chapter describes the S_SHR_*** block.

Description

Function Description

This function shifts the bit pattern at the `IN` input to the right by `n` bits (value at input `N`).

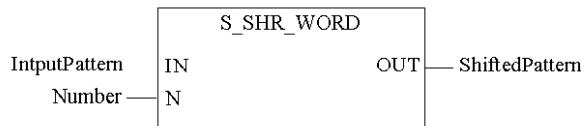
System bit `%S17` is used as CARRY bit, i.e. the status of the bit that is shifted out is stored there.

Zeros are filled in from the left.

Confirm that the data types of the `IN` input and `OUT` output are identical.

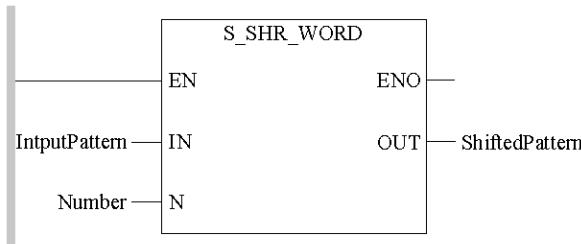
NOTE: Because of IEC 61131-3 conformity, this function also works with the `BOOL` data type. This is not significant here.

`EN` and `ENO` can be configured as additional parameters.


Available Functions

List of available functions

- S_SHR_BOOL
- S_SHR_BYTE
- S_SHR_WORD
- S_SHR_DWORD


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
InputPattern	BOOL, BYTE, WORD, DWORD	<p>This is the bit pattern to be shifted.</p> <p>For example</p> <p>InputPattern = 2#010000011110001.</p>
Number	UINT	<p>This is the number of spaces to be shifted.</p> <p>Example:</p> <p>number = 4.</p>

Description of the output parameter

Parameter	Data Type	Meaning
ShiftedPattern	BOOL, BYTE, WORD, DWORD	<p>This is the bit pattern to be shifted.</p> <p>For example</p> <p>With the data from the previous table, the result is</p> <p>ShiftedPattern = 2#000001000001111</p>

S_SR: Bistable Function Block, Set Dominant

What's in This Chapter

Description	232
-------------------	-----

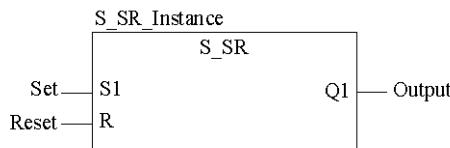
Introduction

This chapter describes the S_SR block.

Description

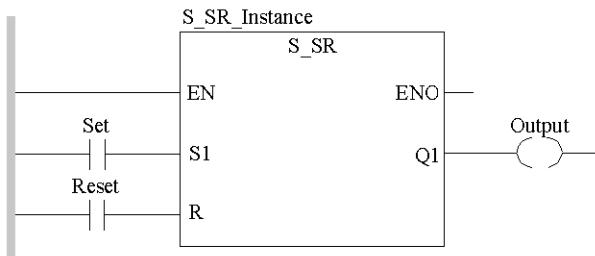
Function Description

The function block is used as SR memory with the property "Set dominant".


Output Q1 becomes 1 when the S1 input becomes 1. This state remains even if input S1 reverts back to 0. Output Q1 changes back to 0 when input R becomes 1. If the inputs S1 and R are both 1 simultaneously, the dominating input S1 will set the output Q1 to 1.

When the function block is called for the first time, the initial state of Q1 is 0.

EN and ENO can be configured as additional parameters.


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
S1	BOOL	set (dominant)
R	BOOL	reset

Description of the output parameter

Parameter	Data Type	Meaning
Q1	BOOL	output

S_XOR_***: Exclusive OR Function

What's in This Chapter

Description	234
-------------------	-----

Introduction

This chapter describes the S_XOR_*** block.

Description

Function Description

The function for a bit XOR is to sequence the bits at the inputs and return the result at the output.

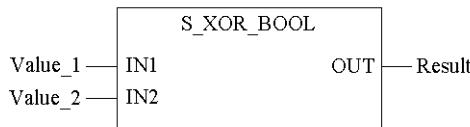
Confirm that the data types of all input values and output values are identical.

The number of inputs can be increased to a maximum of 32.

EN and ENO can be configured as additional parameters.

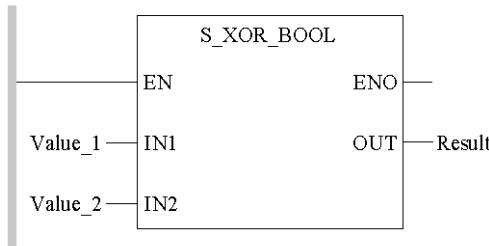
Available Functions

List of available functions


- S_XOR_BOOL
- S_XOR_BYTE
- S_XOR_WORD
- S_XOR_DWORD

Formula

$OUT = IN1 \text{ XOR } IN2 \text{ XOR } \dots \text{ XOR } INn$


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
Value_1	BOOL, BYTE, WORD, DWORD	input bit sequence
Value_2	BOOL, BYTE, WORD, DWORD	input bit sequence
Value_n	BOOL, BYTE, WORD, DWORD	input bit sequence n = max 32

Description of the output parameter

Parameter	Data Type	Meaning
Result	BOOL, BYTE, WORD, DWORD	output bit sequence

Mathematics

What's in This Part

S_ABS_***: Absolute Value Computation.....	237
S_ADD_***: Addition.....	240
S_DIV_***: Division.....	243
S_MUL_***: Multiplication.....	246
S_MOVE: Assignment.....	249
S_NEG_***: Negation	251
S_SQRT_REAL: Safety Square Root.....	254
S_SIGN_***: Sign Evaluation.....	256
S_SUB_***: Subtraction	259

Introduction

This section describes the elementary functions and elementary function blocks of the Mathematics family.

S_ABS_***: Absolute Value Computation

What's in This Chapter

Description	237
-------------------	-----

Introduction

This chapter describes the S_ABS_*** block.

Description

Function Description

The function computes the absolute value of the input value and assigns the result to the output.

Confirm that the data types of the input and output values are identical.

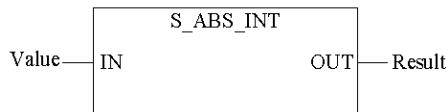
NOTE: Because of IEC 61131-3 conformity, this function also works with the `UINT` and `UDINT` data types. This is not significant here.

`EN` and `ENO` can be configured as additional parameters.

Formula

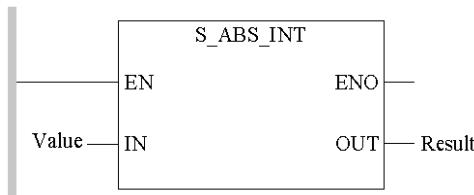
$$OUT = |IN|$$

Available Functions


List of available functions

- `S_ABS_INT`
- `S_ABS_DINT`
- `S_ABS_UINT`

- S_ABS_UDINT
- S_ABS_REAL


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
Value	INT, DINT, UINT, UDINT, REAL	input value

Description of the output parameter

Parameter	Data Type	Meaning
Result	INT, DINT, UINT, UDINT, REAL	output value

Runtime Error

The system bit %S18, page 349 is set to 1, if a value is below a limit value (data types `INT` and `DINT`).

S_ADD_***: Addition

What's in This Chapter

Description	240
-------------------	-----

Introduction

This chapter describes the S_ADD_*** block.

Description

Function Description

The function adds the input values and assigns the result to the output.

Confirm that the data types of all input values and output values are identical.

The number of inputs can be increased to a maximum of 32 for all functions.

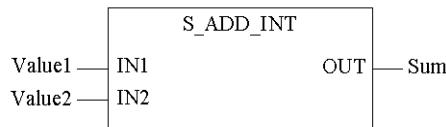
EN and ENO can be configured as additional parameters.

Formula

INT, DINT, UINT, UDINT, REAL:

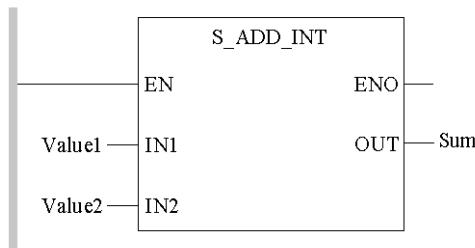
OUT = IN1 + IN2 + ... + INn

Available Functions


List of available functions

- S_ADD_INT
- S_ADD_DINT
- S_ADD_UINT
- S_ADD_UDINT

- S_ADD_REAL


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
Value1	INT, DINT, UINT, UDINT, REAL	summand
Value2	INT, DINT, UINT, UDINT, REAL	summand
Valuen	INT, DINT, UINT, UDINT, REAL	summand n = max 32

Description of the output parameter

Parameter	Data Type	Meaning
Sum	INT, DINT, UINT, UDINT, REAL	sum

Runtime Error

The system bit %S18, page 349 is set to 1, if the value range on the output is exceeded (all available data types).

NOTE: The system word %SW17 (see EcoStruxure™ Control Expert, System Bits and Words, Reference Manual) gives the detected error status on S_ADD_REAL.

S_DIV_***: Division

What's in This Chapter

Description	243
-------------------	-----

Introduction

This chapter describes the S_DIV_*** block.

Description

Function Description

The function divides the value at the **Dividend** with the value at the **Divisor** input and assigns the result to the output.

The data types of the input values and the output values must be identical.

When dividing **INT**, **DINT**, **UINT** and **UDINT** data types, any decimal places in the result are omitted, however, when dividing **REAL** data type any decimal places in the result appear.

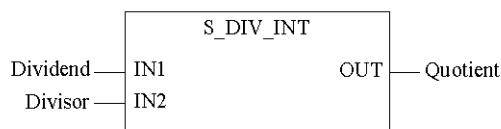
$$7 \div 3 = 2$$

$$(-7) \div 3 = -2$$

EN and **ENO** can be configured as additional parameters.

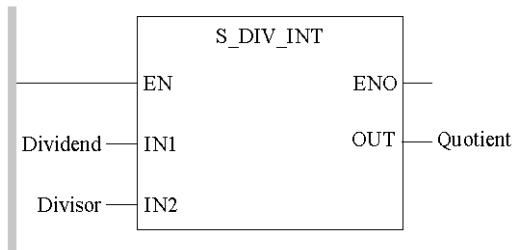
Formula

$$OUT = ((IN1) \div (IN2))$$


Available Functions

List of available functions

- S_DIV_INT
- S_DIV_DINT
- S_DIV_UINT
- S_DIV_UDINT
- S_DIV_REAL


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
Dividend	INT, DINT, UINT, UDINT, REAL	dividend
Divisor	INT, DINT, UINT, UDINT, REAL	divisor

Description of the output parameter

Parameter	Data Type	Meaning
Quotient	INT, DINT, UINT, UDINT, REAL	quotient

Runtime Error

The system bit %S18, page 349 is set to 1, if an invalid division by 0 is executed (all available data types).

NOTE: The system word %SW17 (see EcoStruxure™ Control Expert, System Bits and Words, Reference Manual) gives the detected error status on S_DIV_REAL.

S_MUL_***: Multiplication

What's in This Chapter

Description	246
-------------------	-----

Introduction

This chapter describes the S_MUL_*** block.

Description

Function Description

The function multiplies the input values and assigns the result to the output.

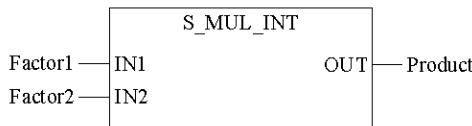
Confirm that the data types of all input values and output values are identical.

The number of inputs can be increased to a maximum of 32.

EN and ENO can be configured as additional parameters.

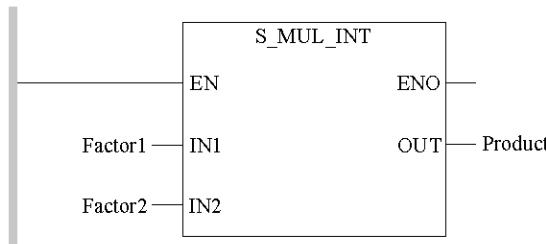
Formula

$$\text{OUT} = \text{IN1} \times \text{IN2} \times \dots \times \text{IN}_n$$


Available Functions

List of available functions

- S_MUL_INT
- S_MUL_DINT
- S_MUL_UINT
- S_MUL_UDINT
- S_MUL_REAL


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
Factor1	INT, DINT, UINT, UDINT, REAL	multiplicand (factor)
Factor2	INT, DINT, UINT, UDINT, REAL	multiplier (factor)
Factorn	INT, DINT, UINT, UDINT, REAL	multiplier (factor) n = max 32

Description of the output parameter

Parameter	Data Type	Meaning
Product	INT, DINT, UINT, UDINT, REAL	product

Runtime Error

The system bit %S18, page 349 is set to 1, if the value range at the output has been exceeded (all available data types).

NOTE: The system word %SW17 (see EcoStruxure™ Control Expert, System Bits and Words, Reference Manual) gives the detected error status on S_MUL_REAL.

S_MOVE: Assignment

What's in This Chapter

Description	249
-------------------	-----

Introduction

This chapter describes the S_MOVE block.

Description

Function Description

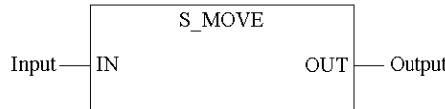
The function assigns the input value to the output.

This is a generic function, i.e. the data type to be processed will be determined by the variable that was first assigned to the function.

If a direct address of a variable is to be assigned or vice versa, always assign the variable to the function first. A direct address at input and output of the function is not authorized since this does not allow a clear definition of the data type.

Confirm that the data types of the input and output values are identical.

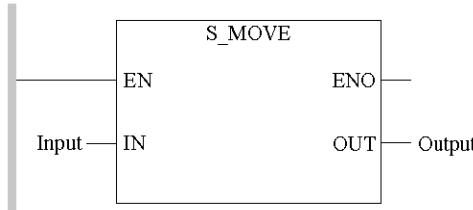
EN and ENO can be configured as additional parameters.


NOTE: It is not possible to copy an array of EBOOL elements using the S_MOVE function, since the S_MOVE function does not update the assignment history of the array elements.

Formula

$$\text{OUT} = \text{IN}$$

Representation in FBD


Representation

Representation in LD

This function can not be used in the LD (Ladder Diagram) programming language with the `BOOL` data type, since the same functionality can be achieved there with contacts and coils.

Representation

Parameter Description

Description of the input parameter

Parameter	Data Type	Meaning
Input	ANY	input value

Description of the output parameter

Parameter	Data Type	Meaning
Output	ANY	output value

S_NEG_***: Negation

What's in This Chapter

Description	251
-------------------	-----

Introduction

This chapter describes the S_NEG_*** block.

Description

Function Description

The function negates the input value and delivers the result at the OUT output.

The negation causes a sign reversal, e.g.

6 -> -6

-4 -> 4

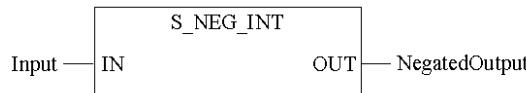
Confirm that the data types of the input and output values are identical.

EN and ENO can be configured as additional parameters.

NOTE: When the INT and DINT data types are processed, it is not possible to convert very long negative values into positive ones. However, the ENO output is not set to 0 when this error is detected.

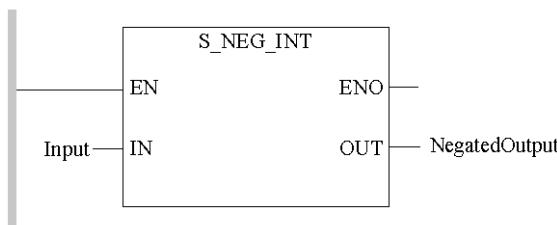
NOTE: When the UINT and UDINT data types are processed, a detected error message is returned.

Available Functions


List of available functions

- S_NEG_INT
- S_NEG_DINT
- S_NEG_UINT

- S_NEG_UDINT
- S_NEG_REAL


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of input parameters

Parameter	Data Type	Meaning
Input	INT, DINT, UINT, UDINT, REAL	input value (Input)

Description of output parameters

Parameter	Data Type	Meaning
Negated Output	INT, DINT, UINT, UDINT, REAL	negated output value (NegatedOutput)

Runtime Error

The system bit %S18, page 349 is set to 1 if

- a violation of the value range at the input occurs during the execution of the function (data types `INT` and `DINT`)
or
- an input value of the data type `UINT` or `UDINT` is to be converted.

S_SQRT_REAL: Safety Square Root

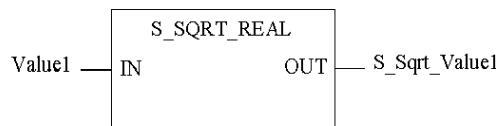
What's in This Chapter

Description	254
-------------------	-----

Introduction

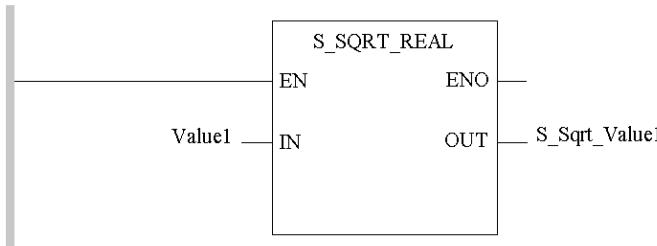
This chapter describes the S_SQRT_REAL block

Description


Function description

The S_SQRT_REAL function extracts the square root from a variable. This function can be called using its generic name.

The additional parameters EN and ENO can be configured.


Representation in FBD

Representation applied to a real:

Representation in LD

Representation applied to a real:

Description of parameters

The following table describes the input parameters:

Parameter	Type	Comment
Value1	REAL.	Variable whose square root you want to extract. $0 \leq \text{Value1}$

The following table describes the output parameters:

Parameter	Type	Comment
S_Sqrt_Value1	REAL.	S_Sqrt_Value1 contains the square root of Value1. S_Sqrt_Value1 is of the same type as Value1.

Runtime errors

When Value1 is of REAL type and negative, the result of the function contains NAN and bit %S18, page 349 = 1.

In case of %S18, page 349 = 1 the system word %SW17 (see EcoStruxure™ Control Expert, System Bits and Words, Reference Manual) indicates the type of detected error.

S_SIGN_***: Sign Evaluation

What's in This Chapter

Description	256
-------------------	-----

Introduction

This chapter describes the S_SIGN_*** block.

Description

Function Description

The function is used for the detection of negative signs.

With a value ≥ 0 at the input, the output becomes 0. With a value < 0 at the input, the output becomes 1.

NOTE: Because of IEC 61131-3 conformity, this function also works with the `UINT` and `UDINT` data types. This is not significant since these functions return a 0 result.

`EN` and `ENO` can be configured as additional parameters.

Formula

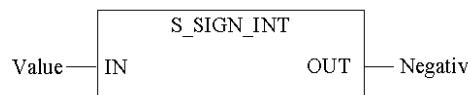
Block formula

$OUT = 1, \text{ if } IN < 0$

$OUT = 0, \text{ if } IN \geq 0$

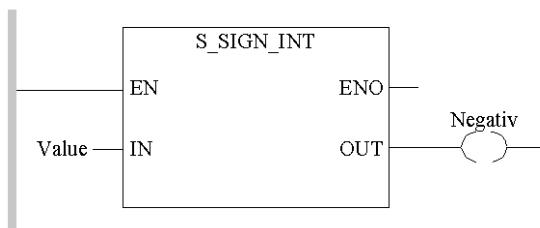
NOTE: Be aware of the following behavior results for signed 0 (+/-0):

- $-0 \rightarrow \text{SIGN_INT/DINT} \rightarrow 0$
- $+0 \rightarrow \text{SIGN_INT/DINT} \rightarrow 0$


Available Functions

List of available functions

- S_SIGN_INT
- S_SIGN_DINT
- S_SIGN_UINT
- S_SIGN_UDINT
- S_SIGN_REAL


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of input parameters

Parameter	Data Type	Meaning
Value	INT, DINT, UINT, UDINT, REAL	signed input

Description of output parameters

Parameter	Data Type	Meaning
Negative	BOOL	sign evaluation

Runtime Error

The system bit %S18, page 349 is set to 1 and ENO to 0 if an input value of the data type **UINT** or **UDINT** is given.

S_SUB_***: Subtraction

What's in This Chapter

Description	259
-------------------	-----

Introduction

This chapter describes the S_SUB_*** block.

Description

Function Description

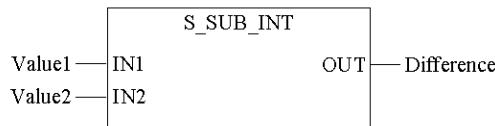
The function subtracts the value at the Value2 input from the value at the Value1 input and assigns the result to the output.

Confirm that the data types of the input values and the output values are identical.

EN and ENO can be configured as additional parameters.

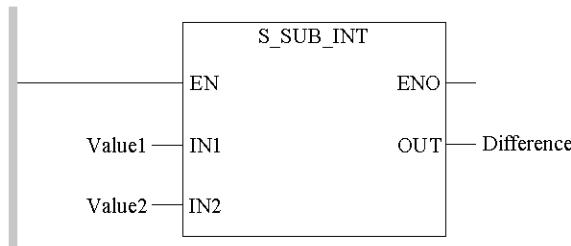
Formula

$\text{Difference} = \text{Value1} - \text{Value2}$


Available Functions

List of available functions

- S_SUB_INT
- S_SUB_DINT
- S_SUB_UINT
- S_SUB_UDINT
- S_SUB_REAL


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
Value1	INT, DINT, UINT, UDINT, REAL	minuend
Value2	INT, DINT, UINT, UDINT, REAL	subtrahend

Description of the output parameter

Parameter	Data Type	Meaning
Difference	INT, DINT, UINT, UDINT, REAL	difference

Runtime Error

The system word %SW17 (see EcoStruxure™ Control Expert, System Bits and Words, Reference Manual) gives the detected error status on S_SUB_REAL.

Statistical

What's in This Part

S_LIMIT_***: Limit	263
S_MAX_***: Maximum Value Function.....	266
S_MIN_***: Minimum Value Function.....	269
S_MUX_***: Multiplexer	272
S_SEL: Binary Selection	275

Introduction

This section describes the elementary functions and elementary function blocks of the Statistical group.

S_LIMIT_***: Limit

What's in This Chapter

Description	263
-------------------	-----

Introduction

This chapter describes the S_LIMIT_*** block.

Description

Function Description

This function transfers the unchanged input value (`Input`) to the output if the input value is not less than the minimum value (`LowerLimit`) and does not exceed the maximum value (`UpperLimit`). If the input value (`Input`) is less than the minimum value (`LowerLimit`), the minimum value will be transferred to the output. If the input value (`Input`) exceeds the maximum value (`UpperLimit`), the maximum value will be transferred to the output.

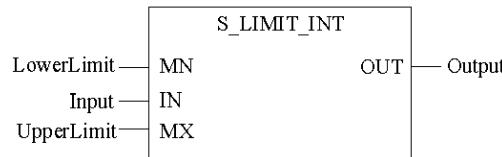
Confirm that the data types of all input values and output values are identical.

`EN` and `ENO` can be configured as additional parameters.

Formula

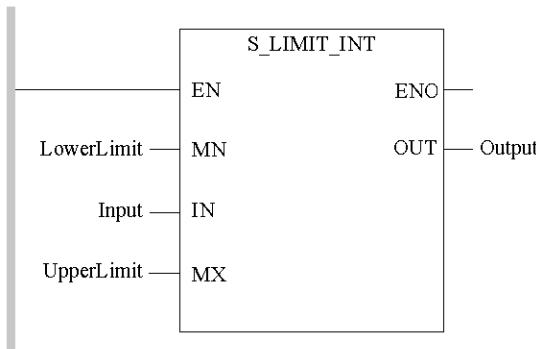
$$\text{OUT} = \text{IN, if } (\text{IN} \geq \text{MN}) \ \& \ (\text{IN} \leq \text{MX})$$
$$\text{OUT} = \text{MN, if } (\text{IN} < \text{MN})$$
$$\text{OUT} = \text{MX, if } (\text{IN} > \text{MX})$$

Available Functions


List of available functions

- S_LIMIT_BOOL

- S_LIMIT_BYTE
- S_LIMIT_WORD
- S_LIMIT_DWORD
- S_LIMIT_INT
- S_LIMIT_DINT
- S_LIMIT_UINT
- S_LIMIT_UDINT


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
LowerLimit	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT	lower limit
Input	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT	input
UpperLimit	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT	upper limit

Description of the output parameter

Parameter	Data Type	Meaning
Output	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT	output

S_MAX_***: Maximum Value Function

What's in This Chapter

Description	266
-------------------	-----

Introduction

This chapter describes the S_MAX_*** block.

Description

Function Description

The function assigns the largest input value to the output.

Confirm that the data types of all input values and output values are identical.

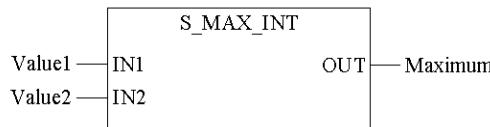
The number of inputs can be increased to maximum 32.

EN and ENO can be configured as additional parameters.

Formula

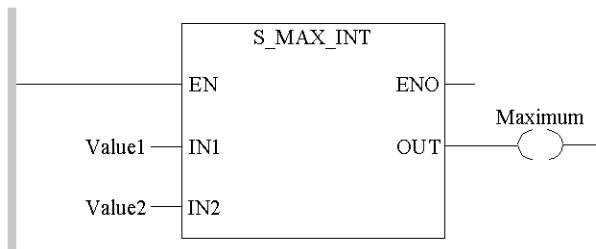
$$\text{OUT} = \text{MAX}\{\text{IN1}, \text{IN2}, \dots, \text{INn}\}$$

Available Functions


List of available functions

- S_MAX_BOOL
- S_MAX_BYTE
- S_MAX_WORD
- S_MAX_DWORD
- S_MAX_INT

- S_MAX_DINT
- S_MAX_UINT
- S_MAX_UDINT


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of input parameters

Parameter	Data Type	Meaning
Value1	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT	1. input value
Value2	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT	2. input value
Valuen	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT	n. input value n = max 32

Description of output parameters

Parameter	Data Type	Meaning
Maximum	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT	maximum value

S_MIN_***: Minimum Value Function

What's in This Chapter

Description	269
-------------------	-----

Introduction

This chapter describes the S_MIN_*** block.

Description

Function Description

The function assigns the smallest input value to the output.

Confirm that the data types of all input values and output values are identical.

The number of inputs can be increased to maximum 32.

EN and ENO can be configured as additional parameters.

Formula

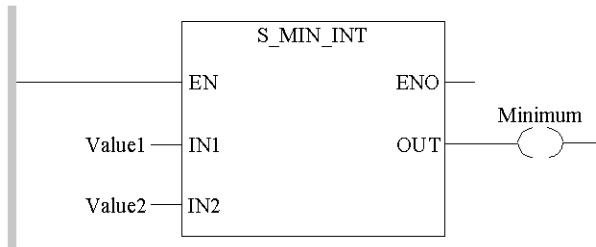
$$\text{OUT} = \text{MIN}\{\text{IN1}, \text{IN2}, \dots, \text{INn}\}$$

Available Functions

List of available functions

- S_MIN_BOOL
- S_MIN_BYTE
- S_MIN_WORD
- S_MIN_DWORD
- S_MIN_INT

- S_MIN_DINT
- S_MIN_UINT
- S_MIN_UDINT


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of input parameters

Parameter	Data Type	Meaning
Value1	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT	1. input value
Value2	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT	2. input value
Valuen	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT	n. input value n = max 32

Description of output parameters

Parameter	Data Type	Meaning
Minimum	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT	minimum value

S_MUX_***: Multiplexer

What's in This Chapter

Description	272
-------------------	-----

Introduction

This chapter describes the S_MUX_*** block.

Description

Function Description

This function transfers the respective input to the output depending on the value at the K input.

The number of inputs can be increased to maximum 31.

EN and ENO can be configured as additional parameters.

Example

$K = 0$: Input $IN0$ is transferred to the output

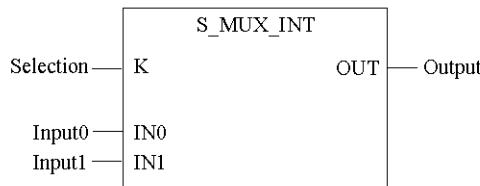
$K = 1$: Input $IN1$ is transferred to the output

$K = 5$: Input $IN5$ is transferred to the output

$K = n$: Input INn is transferred to the output

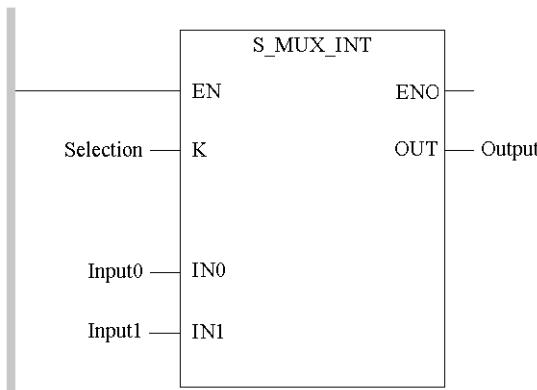
Data Types

Confirm that the data types at the inputs $Input0$ to $Inputn$ and at the output are identical.


Available Functions

List of available functions

- S_MUX_INT
- S_MUX_DINT
- S_MUX_UINT
- S_MUX_UDINT


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of input parameters

Parameter	Data Type	Meaning
K	INT, DINT, UINT, UDINT	selection input K = 0...30
IN0	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT	1. input
IN1	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT	2. input
IN2	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT	3. input
INn	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT	n+1. input, n = max. 30

Description of output parameters

Parameter	Data Type	Meaning
OUT	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT	output

S_SEL: Binary Selection

What's in This Chapter

Description	275
-------------------	-----

Introduction

This chapter describes the S_SEL block.

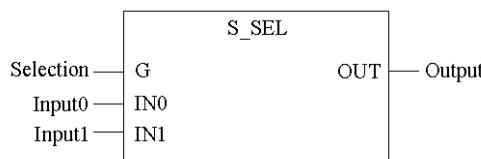
Description

Function Description

The function is used for binary selection between 2 input values.

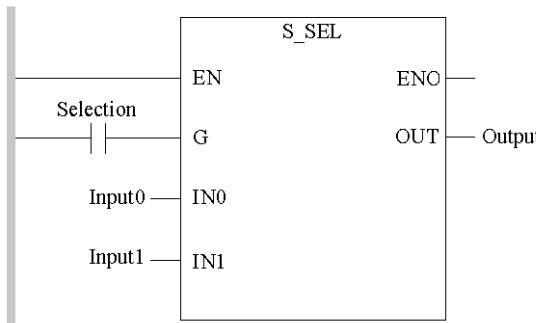
Depending on the state of the Selection input, either the Input0 input or Input1 input is transferred to the Output output.

Selection = 0 -> Output = Input0


Selection = 1 -> Output = Input1

Confirm that the data types of the Input0 and Input1 input values and the Output output values are identical.

EN and ENO can be configured as additional parameters.


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
Selection	BOOL	selection input
Input0	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT	input 0
Input1	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT	input 1

Description of the output parameter

Parameter	Data Type	Meaning
Output	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, UDINT	output

System

What's in This Part

S_SYST_CLOCK_MX: System Clock.....	278
S_SYST_READ_TASK_BIT_MX: System Task Bit	281
S_SYST_RESET_TASK_BIT_MX: Reset Task	283
S_SYST_STAT_MX: System State.....	285
S_SYST_TIME_MX: System Time	287

Introduction

This section describes the elementary functions and elementary function blocks of the System family.

S_SYST_CLOCK_MX: System Clock

What's in This Chapter

Description	278
-------------------	-----

Introduction

This chapter describes the S_SYST_CLOCK_MX block.

Description

Function Description

The S_SYST_CLOCK_MX function is only available for CPU with firmware 3.10 or earlier.

Use the S_SYST_CLOCK_MX function to return the value of safe time clock.

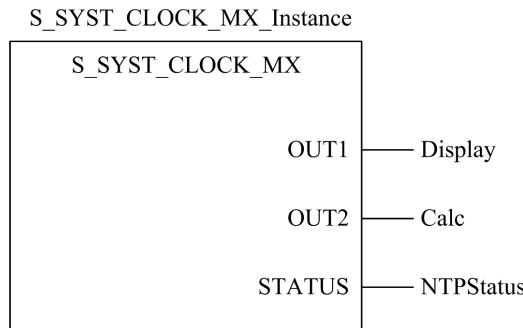
The safe time clock value is frozen during the execution of the SAFE task cycle.

The safe time clock can be optionally synchronized by an external NTP server. In this case, an NTP status is provided. If no NTP server is identified in the configuration, the safe time is synchronized by the RTC.

NOTE: The time received from the NTP server, or from the RTC, is used to synchronize the safe time clock under certain conditions. If the difference between the safe time clock and the NTP server or RTC is:

- Less than or equal to 2 seconds: a progressive update of the safe time clock is performed at the rate of 1ms per second (max 2000 s of catch-up time).
- Greater than 2 seconds: the safe time clock is maintained locally and a status of the detected synchronization error is returned.

The application can trigger a non-conditional update of safe time clock by applying a fixed value to system word %SW128.


The clock value is given in 2 different formats (S_Calc_Time and S_Display_Time, as with other system clock functions).

The function has no input parameter.

EN and ENO can be configured as additional parameters.

Representation in FBD

Representation

Parameter Description

The `S_SYST_CLOCK_MX` function consists of the following output parameters:

- OUT1
- OUT2
- STATUS

The `S_SYST_CLOCK_MX` function includes no input parameters.

Output Parameters

Parameter	Data Type	Meaning
OUT1	<code>S_Display_Time</code> ¹	Display. Structure containing a DT element and a millisecond counter
OUT2	<code>S_Calc_Time</code> ²	Calc. Structure containing a clock second counter, elapsed since January 1, 1980, at 00:00, and a millisecond counter.

Parameter	Data Type	Meaning
STATUS	INT	<p>BIT0 : is set to:</p> <ul style="list-style-type: none"> • 1 if safe time is valid. • 0 if safe time is not valid. <p>NOTE: If safe time is not valid, it may be due to an invalid NTP status (if CPU is configured as NTP client) and/or to the fact that CPU time has been changed for more than 2 seconds. Use %SW128 to force the synchronization of the safe time with internal CPU time if required.</p> <p>1. <code>S_Display_Time</code> is a structure comprising a <code>DT</code> type element and an <code>INT</code> type element:</p> <ul style="list-style-type: none"> • <code>DT_value</code> containing the date. • <code>Millisecond</code> containing the number of milliseconds of this date. <p>2. <code>S_Calc_Time</code> is a predefined structure comprising a <code>UDINT</code> type element and an <code>INT</code> type element:</p> <ul style="list-style-type: none"> • <code>Calc.Seconds</code> containing the number of seconds passed since January 1, 1900, at 00:00. • <code>Calc.Fraction_Second</code> containing the number of milliseconds to add for the precision of the result to be around a millisecond.

S_SYST_READ_TASK_BIT_MX: System Task Bit

What's in This Chapter

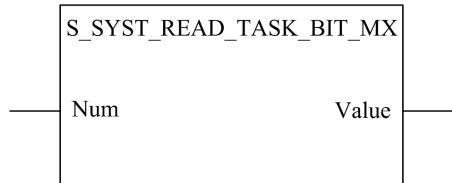
Description	281
-------------------	-----

Introduction

This chapter describes the S_SYST_READ_TASK_BIT_MX block.

Description

Function Description


Use the S_SYST_READ_TASK_BIT_MX function to read and return the value of one of the following specified system task bits: %S17, %S18, or %S21.

EN and ENO can be configured as additional parameters.

Representation in FBD

Representation

S_SYST_READ_TASK_BIT_MX_Instance

Input Parameters

Parameter	Data Type	Meaning
Num	INT	Number of the system bit for the specified task: %S17, %S18, or %S21.

Output Parameters

Parameter	Data Type	Meaning
Value	BOOL	Value of the system bit.
ENO	BOOL	If mapped, displays false (0) if an invalid <code>Num</code> value is configured.

S_SYST_RESET_TASK_BIT_MX: Reset Task

What's in This Chapter

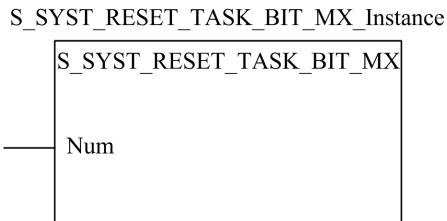
Description	283
-------------------	-----

Introduction

This chapter describes the S_SYST_RESET_TASK_BIT_MX block.

Description

Function Description


Use the S_SYST_RESET_TASK_BIT_MX function to set to a value of 0 to one of the following specified system task bits: %S17, %S18, or %S21.

EN and ENO can be configured as additional parameters.

NOTE: Schneider Electric recommends that the EN, page 22 parameter be enabled only when it is required to acknowledge the information set by the corresponding %S, which has been set to a value of 1 by the system.

Representation in FBD

Representation

Input Parameters

Parameter	Data Type	Meaning
Num	INT	Number of the system bit for the specified task to be reset: %S17, %S18, or %S21.

Output Parameters

Parameter	Data Type	Meaning
ENO	BOOL	If mapped, displays false (0) if an invalid Num value is configured.

S_SYST_STAT_MX: System State

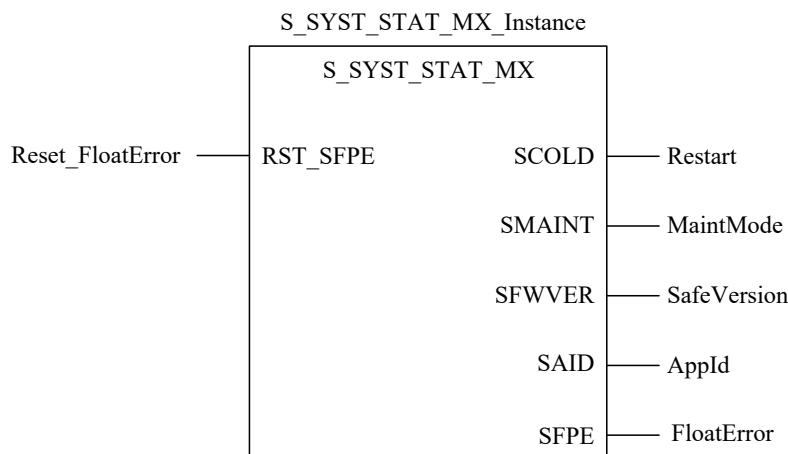
What's in This Chapter

Description	285
-------------------	-----

Introduction

This chapter describes the S_SYST_STAT_MX block.

Description


Function Description

Use the S_SYST_STAT_MX function to read and return information about the state of the safety system.

EN and ENO can be configured as additional parameters.

Representation in FBD

Representation

Output Parameters

Parameter	Data Type	Meaning
RST_SFPE	BOOL	If the value is set to: <ul style="list-style-type: none"> • 1: The value for the last floating point error detected by the system on safe sections is written to the SFPE output parameter, then cleared by resetting the detected error to 0. • 0: The value for the last floating point error detected by the system on safe sections is not written to the SFPE output parameter, and the detected error is not reset to 0.

Output Parameters

Parameter	Data Type	Meaning
SCOLD	BOOL	Restart. Value set to 1 during first Safe task cycle after initialization of safe variables.
SMAINT	BOOL	MaintMode. Value set to 1 when CPU is in maintenance mode.
SFWVER	INT	SafeVersion. Contains in binary coded decimal (BCD) format the Safety Copro firmware version, for example 16#0102 for V1.2. Note that the main version (01 in this example) is the Safety part of product firmware version (example V02.30.01 for CPU firmware V2.30 and Copro firmware V1.2).
SAID	INT	Appld. Contains an ID of the safety portion of the application: %SW169. If you use the Build menu command Build Changes or Rebuild All Project , this ID will be modified only if the safety portion of the application has been changed.
SFPE	INT	Stores the System Floating Point Error (SFPE) value that was most recently detected in a Safe task section. When a system floating point error is detected, system bit %S18 is set to 1. The SFPE parameter can contain the following values: <ul style="list-style-type: none"> • Bit 0: Invalid operation detected. The result is not a number. • Bit 1: Denormalized operand detected. Result is acceptable. • Bit 2: Division by 0. Result = infinity. • Bit 3: Overflow. Result = infinity. • Bit 4: Underflow. Result = 0. • All other bits are reserved.

S_SYST_TIME_MX: System Time

What's in This Chapter

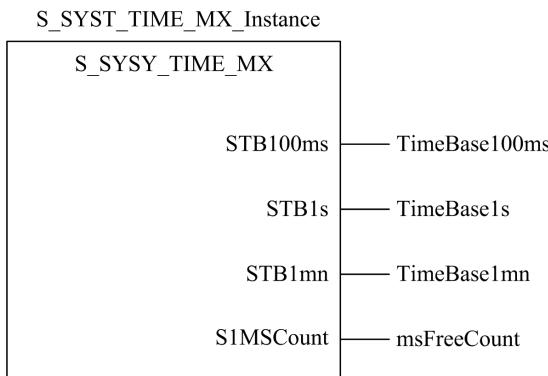
Description	287
-------------------	-----

Introduction

This chapter describes the S_SYST_TIME_MX block.

Description

Function Description


Use the S_SYST_TIME_MX function to return the time elapsed since the completion of the most recent SAFE task cycle.

NOTE: The time values are frozen during execution of the SAFE task cycle. Calls to this function made at different times during execution of the same SAFE task cycle return the same values.

EN and ENO can be configured as additional parameters.

Representation in FBD

Representation

Parameter Description

The S_SYST_TIME_MX function consists of the following parameters:

Output parameters:

- STB100ms
- STB1s
- STB1mn
- S1MSCount

This function has no input parameters.

Output Parameters

Parameter	Data Type	Meaning
STB100ms	BOOL	TimeBase100ms. This bit toggles every 50 ms.
STB1s	BOOL	TimeBase1s. This bit toggles every 500 ms.
STB1mn	BOOL	TimeBase1mn. This bit toggles every 30 s.
S1MSCount	DINT	msFreeCount. Free running counter with 1 ms increment.

Timers & Counters

What's in This Part

S_CTD_***: Down Counter	290
S_C TU_***: Up Counter	293
S_C TUD_***: Up/Down Counter	296
S_TOF: Off Delay	299
S_TON: On Delay	302
S_TP: Pulse	305

Introduction

This section describes the elementary functions and elementary function blocks of the Timers & Counters family.

S_CTD_***: Down Counter

What's in This Chapter

Description	290
-------------------	-----

Introduction

This chapter describes the S_CTD_*** blocks.

Description

Function Description

The function block is used for downwards counting.

A 1 signal at the LD input causes the value of the PV input to be allocated to the CV output. With each transition from 0 to 1 at the CD input, the value of CV is reduced by 1.

When CV ≤ 0 , the Q output becomes 1.

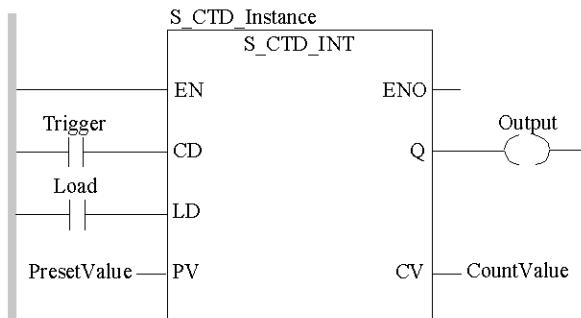
NOTE: The counter only works to the minimum values of the data type being used. No overflow occurs.

EN and ENO can be configured as additional parameters.


Available Functions

List of available functions

- S_CTD_INT
- S_CTD_DINT
- S_CTD_UINT
- S_CTD_UDINT


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
CD	BOOL	trigger input
LD	BOOL	load data
PV	INT, DINT, UINT, UDINT	preset value

Description of the output parameter

Parameter	Data Type	Meaning
Q	BOOL	output
CV	INT, DINT, UINT, UDINT	count value (actual value)

S_CGU_***: Up Counter

What's in This Chapter

Description	293
-------------------	-----

Introduction

This chapter describes the S_CGU_*** block.

Description

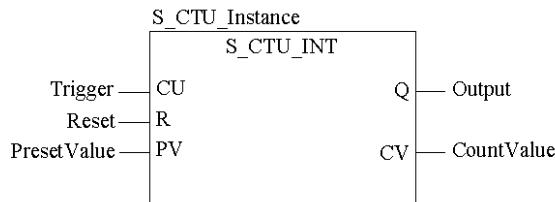
Function Description

The function block is used for upwards counting.

A 1 signal at the `R` input causes the value 0 to be assigned to the `CV` output. With each transition from 0 to 1 at the `CU` input, the value of `CV` is incremented by 1. When $CV \geq PV$, the `Q` output is set to 1.

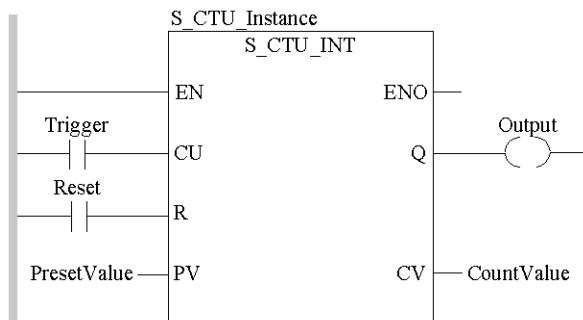
NOTE: The counter only works to the maximum values of the data type being used. No overflow occurs.

`EN` and `ENO` can be configured as additional parameters.


Available Functions

List of available functions

- S_CGU_INT
- S_CGU_DINT
- S_CGU_UINT
- S_CGU_UDINT


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
CU	BOOL	trigger input
R	BOOL	reset
PV	INT, DINT, UINT, UDINT	preset value

Description of the output parameter

Parameter	Data Type	Meaning
Q	BOOL	output
CV	INT, DINT, UINT, UDINT	count value (actual value)

S_CTUD_***: Up/Down Counter

What's in This Chapter

Description	296
-------------------	-----

Introduction

This chapter describes the S_CTUD_*** block.

Description

Function Description

The function block is used for upwards and downwards counting.

A 1 signal at the `R` input causes the value 0 to be assigned to the `CV` output. A 1 signal at the `LD` input causes the value of the `PV` input to be allocated to the `CV` output. With each transition from 0 to 1 at the `CU` input, the value of `CV` is incremented by 1. With each transition from 0 to 1 at the `CD` input, the value of `CV` is reduced by 1.

If there is a simultaneous 1 signal at inputs `R` and `LD`, input `R` has precedence.

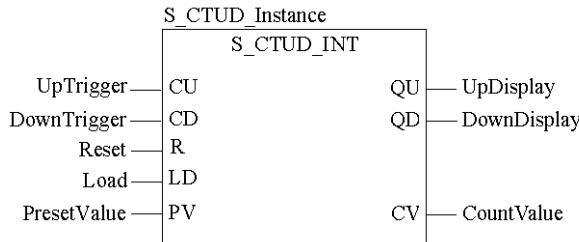
When `CV` \geq `PV`, output `QU` becomes 1.

When `CV` \leq 0, the `QD` output becomes 1.

NOTE: The down counter only works to the minimum values of the data type being used, and the up counter only to the maximum values of the data type being used. No overflow occurs.

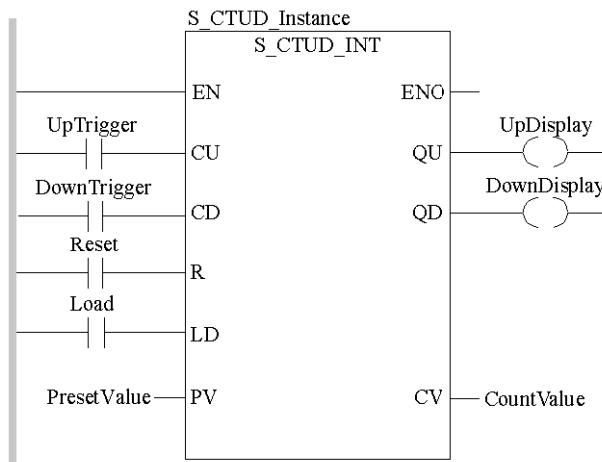
`EN` and `ENO` can be configured as additional parameters.

Available Functions


List of available functions

- S_CTUD_INT
- S_CTUD_DINT
- S_CTUD_UINT

- S_CTUD_UDINT


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
CU	BOOL	up counter trigger input
CD	BOOL	down counter trigger input
R	BOOL	reset
LD	BOOL	load data
PV	INT, DINT, UINT, UDINT	preset value

Description of the output parameter

Parameter	Data Type	Meaning
QU	BOOL	up display
QD	BOOL	down display
CV	INT, DINT, UINT, UDINT	count value (actual value)

S_TOF: Off Delay

What's in This Chapter

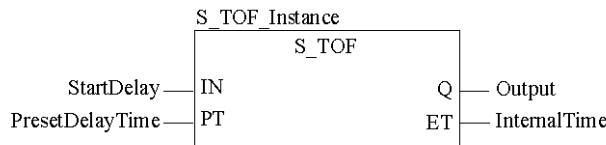
Description	299
-------------------	-----

Introduction

This chapter describes the S_TOF block.

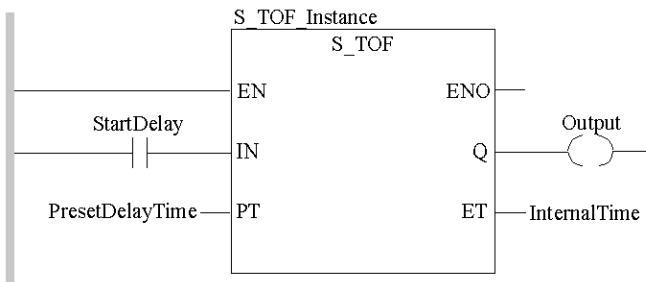
Description

Function Description


The function block is used as the Off delay.

When the function block is called for the first time, the initial state of ET is 0.

EN and ENO can be configured as additional parameters.


Representation in FBD

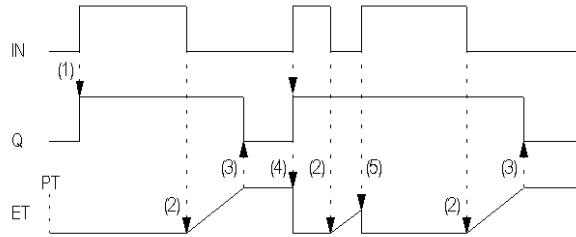
Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters


Parameter	Data Type	Meaning
IN	BOOL	start delay
PT	TIME	preset delay time

Description of the output parameter

Parameter	Data Type	Meaning
Q	BOOL	output
ET	TIME	internal time

Timing Diagram

Representation of the OFF delay S_TOF

- (1) If IN becomes 1, Q becomes 1.
- (2) If IN becomes 0, the internal time (ET) is started.
- (3) If the internal time reaches the value of PT, Q becomes 0.
- (4) If IN becomes 1, Q becomes 1, and the internal time is stopped/reset.
- (5) If IN becomes 1 before the internal time has reached the value of PT, the internal time is stopped/reset without Q being set back to 0.

S_TON: On Delay

What's in This Chapter

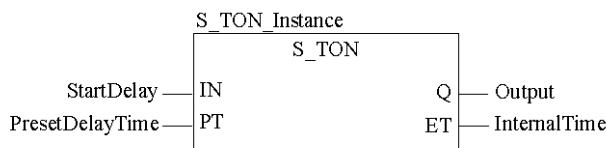
Description	302
-------------------	-----

Introduction

This chapter describes the S_TON block.

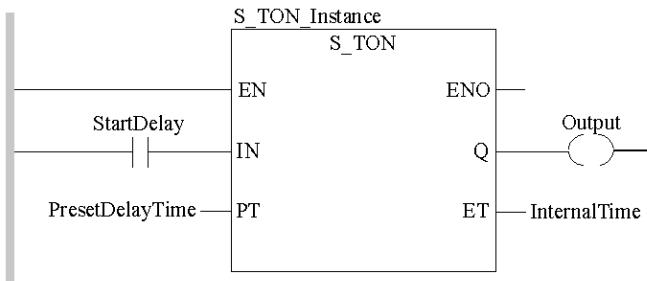
Description

Function Description


The function block is used as the On delay.

When the function block is called for the first time, the initial state of ET is 0.

EN and ENO can be configured as additional parameters.


Representation in FBD

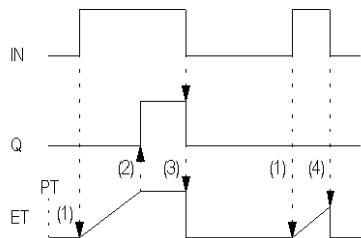
Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters


Parameter	Data Type	Meaning
IN	BOOL	start delay
PT	TIME	preset delay time

Description of the output parameter

Parameter	Data Type	Meaning
Q	BOOL	output
ET	TIME	internal time

Timing Diagram

Representation of the ON delay S_TON

- (1) If IN becomes 1, the internal time (ET) starts.
- (2) If the internal time reaches the value of PT, Q becomes 1.
- (3) If IN becomes 0, Q becomes 0 and the internal time is stopped/reset.
- (4) If IN becomes 0 before the internal time has reached the value of PT, the internal time stops/resets without Q going to 1.

S_TP: Pulse

What's in This Chapter

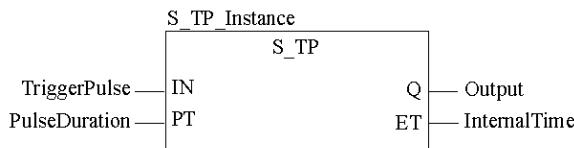
Description	305
-------------------	-----

Introduction

This chapter describes the S_TP block.

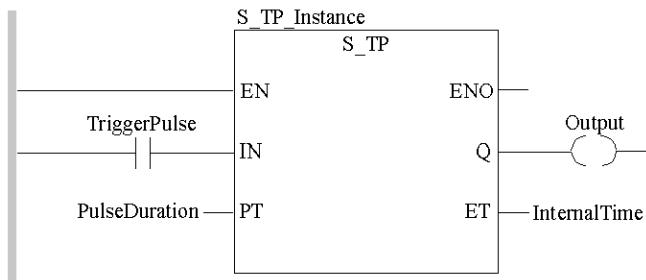
Description

Function Description


The function block is used for the generation of a pulse with defined duration.

When the function block is called for the first time, the initial state of ET is 0.

EN and ENO can be configured as additional parameters.


Representation in FBD

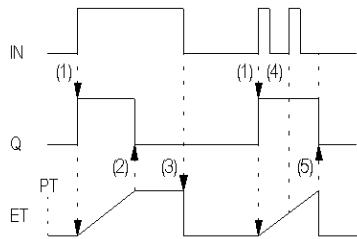
Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters


Parameter	Data Type	Meaning
IN	BOOL	trigger pulse
PT	TIME	preset pulse duration

Description of the output parameters:

Parameter	Data Type	Meaning
Q	BOOL	output
ET	TIME	internal time

Timing Diagram

Representation of the S_TP pulse

- (1) If IN becomes 1, Q becomes 1 and the internal time (ET) starts.
- (2) If the internal time reaches the value of PT, Q becomes 0 (independent of IN).
- (3) The internal time stops/is reset if IN becomes 0.
- (4) If the internal time has not reached the value of PT yet, the internal time is not affected by a clock at IN.
- (5) If the internal time has reached the value of PT and IN is 0, the internal time stops/is reset and Q becomes 0.

Type to Type

What's in This Part

S_BIT_TO_BYTE: Type Conversion.....	309
S_BIT_TO_WORD: Type Conversion.....	312
S_BOOL_TO_***: Type Conversion	315
S_BYTE_TO_BIT: Type Conversion	317
S_BYTE_TO_***: Type Conversion	320
S_DWORD_TO_***: Type Conversion.....	322
S_INT_TO_***: Type Conversion	325
S_DINT_TO_***: Type Conversion.....	328
S_REAL_TO_***: Type Conversion	331
S_TIME_TO_UDINT: Type Conversion.....	334
S_UDINT_TO_***: Type Conversion	336
S_UINT_TO_***: Type Conversion.....	339
S_WORD_TO_BIT: Type Conversion	342
S_WORD_TO_***: Type Conversion	345

Introduction

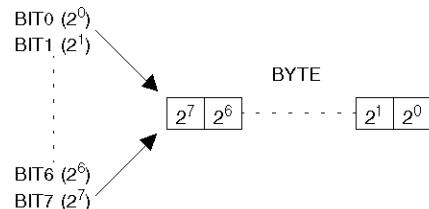
This section describes the elementary functions and elementary function blocks of the **Type to Type** family.

S_BIT_TO_BYTE: Type Conversion

What's in This Chapter

Description	309
-------------------	-----

Introduction


This chapter describes the S_BIT_TO_BYTE block.

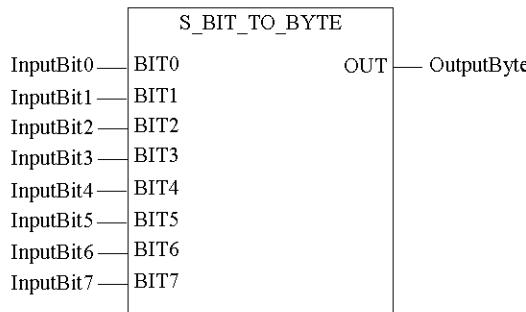
Description

Function Description

The function converts 8 input values of the data type **BOOL** to an output of the **BYTE** data type.

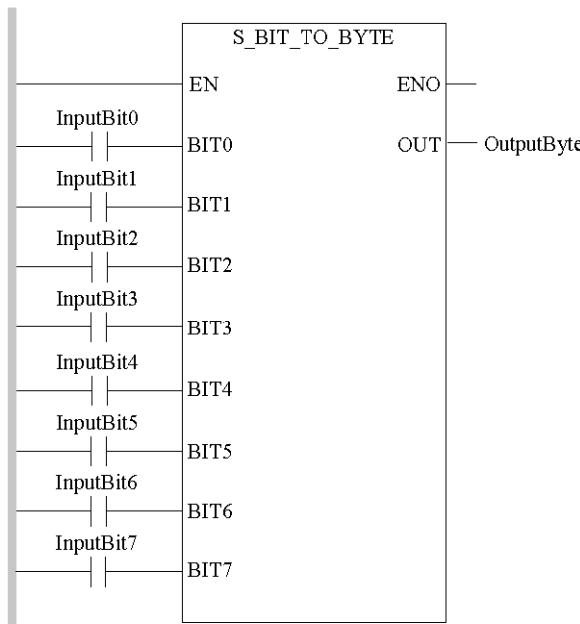
The input values are assigned to the individual bits of the byte at the output according to the input names.

EN and ENO can be configured as additional parameters.


Formula

Block formula

$$OUT = \{BIT7, BIT6, \dots, BIT0\}$$


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
InputBit0	BOOL	input bit 0
InputBit1	BOOL	input bit 1
:	:	:
InputBit7	BOOL	input bit 7

Description of the output parameter:

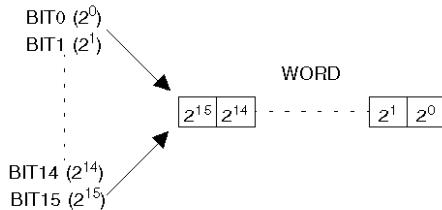
Parameter	Data Type	Meaning
OutputByte	BYTE	output value

S_BIT_TO_WORD: Type Conversion

What's in This Chapter

Description	312
-------------------	-----

Introduction


This chapter describes the S_BIT_TO_WORD block.

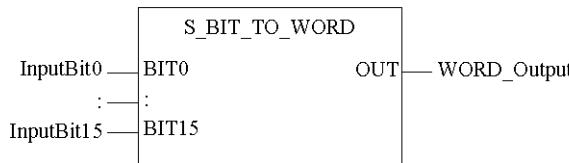
Description

Function Description

The function converts 16 input values of the `BOOL` data type to an output value of the `WORD` data type.

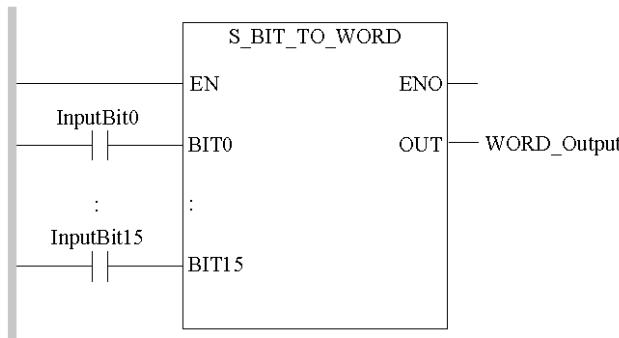
The input values are assigned to the individual bits of the word at the output according to the input names.

`EN` and `ENO` can be configured as additional parameters.


Formula

Block formula

$$OUT = \{BIT15, BIT14, \dots, BIT0\}$$


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
InputBit0	BOOL	input bit 0
:	:	:
InputBit15	BOOL	input bit 15

Description of the output parameter

Parameter	Data Type	Meaning
WORD_Output	WORD	output value

S_BOOL_TO_***: Type Conversion

What's in This Chapter

Description	315
-------------------	-----

Introduction

This chapter describes the S_BOOL_TO_*** block.

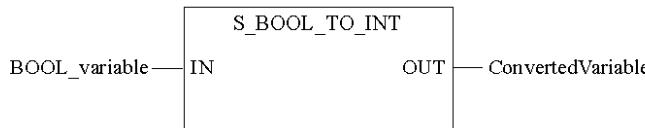
Description

Function Description

The function converts an input value of the **BOOL** data type to a **BYTE**, **WORD**, **DWORD**, **INT**, **DINT**, **UINT** or **UDINT** data type.

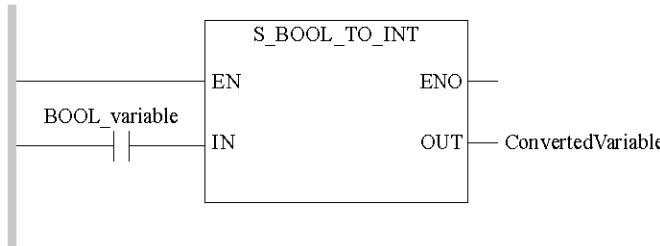
The input value is written in the lowest bit of the output. All other output bits are set to zero.

EN and **ENO** can be configured as additional parameters.


Available Functions

List of available functions

- S_BOOL_TO_BYTE
- S_BOOL_TO_WORD
- S_BOOL_TO_DWORD
- S_BOOL_TO_INT
- S_BOOL_TO_DINT
- S_BOOL_TO_UINT
- S_BOOL_TO_UDINT


Representation in FBD

Representation of an Integer application

Representation in LD

Representation of an Integer application

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
BOOL_variable	BOOL	input value

Description of the output parameter

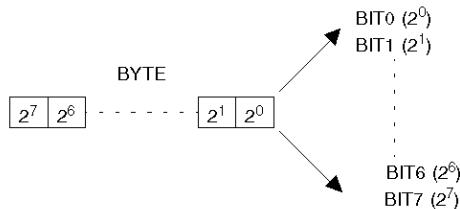
Parameter	Data Type	Meaning
ConvertedVariable	BYTE, WORD, DWORD, INT, DINT, UINT, UDINT	output value

S_BYTE_TO_BIT: Type Conversion

What's in This Chapter

Description	317
-------------------	-----

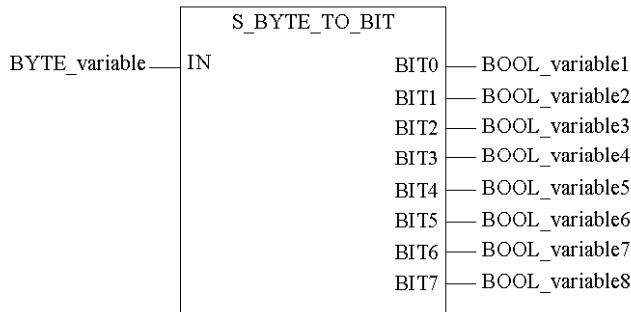
Introduction


This chapter describes the S_BYTE_TO_BIT block.

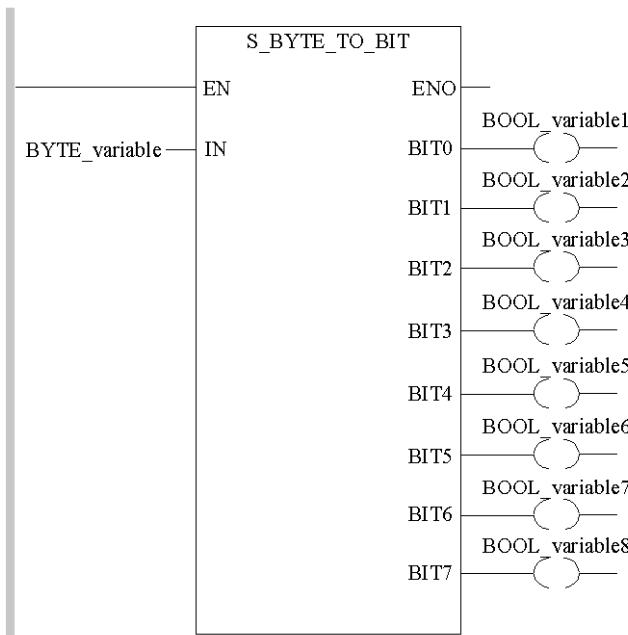
Description

Function Description

The procedure converts an input value of the **BYTE** data type to 8 output values of the **BOOL** data type.


The individual bits of the byte at the input are assigned to the outputs according to the output names.

EN and **ENO** can be configured as additional parameters.


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
BYTE_variable	BYTE	input

Description of the output parameter

Parameter	Data Type	Meaning
BOOL_variable1	BOOL	output bit 0
BOOL_variable2	BOOL	output bit 1
:	:	:
BOOL_variable8	BOOL	output bit 7

S_BYTE_TO_***: Type Conversion

What's in This Chapter

Description	320
-------------------	-----

Introduction

This chapter describes the S_BYTE_TO_*** block.

Description

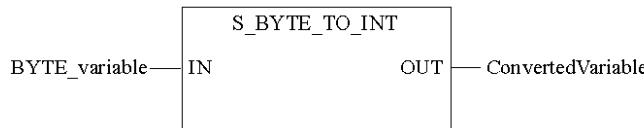
Function Description

The function converts an input value of the **BYTE** data type to a **BOOL**, **WORD**, **DWORD**, **INT**, **DINT**, **UINT** or **UDINT** data type.

When converting the data type **BYTE** to the data type **WORD**, **DWORD**, **INT**, **DINT**, **UINT** or **UDINT**, the bit pattern of the input is transferred to the least significant bits of the output. The most significant bits of the output are set to zero.

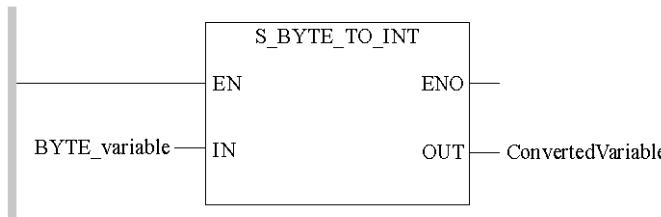
When converting the data type **BYTE** into the data type **BOOL**, the least significant bit of the input value is transferred to the output.

EN and **ENO** can be configured as additional parameters.


Available Functions

List of available functions

- S_BYTE_TO_BOOL
- S_BYTE_TO_WORD
- S_BYTE_TO_DWORD
- S_BYTE_TO_INT
- S_BYTE_TO_DINT
- S_BYTE_TO_UINT
- S_BYTE_TO_UDINT


Representation in FBD

Representation of an Integer application

Representation in LD

Representation of an Integer application

Parameter Description

Description of input parameters

Parameter	Data Type	Meaning
BYTE_variable	BYTE	input value

Description of output parameters

Parameter	Data Type	Meaning
ConvertedVariable	BOOL, WORD, DWORD, INT, DINT, UINT, UDINT	output value

S_DWORD_TO_***: Type Conversion

What's in This Chapter

Description	322
-------------------	-----

Introduction

This chapter describes the S_DWORD_TO_*** block.

Description

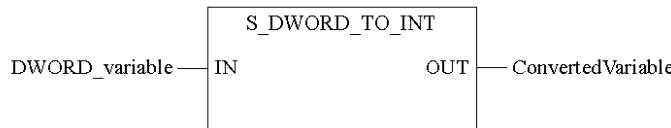
Function Description

The function converts an input value of the DWORD data type to a BOOL, BYTE, WORD, INT, DINT, UINT or UDINT data type.

NOTE: The function converts strictly in accordance with IEC rules. Since this function has been realized as a generic function, there will also be a few illogical conversions, e.g. DWORD_TO_BOOL.

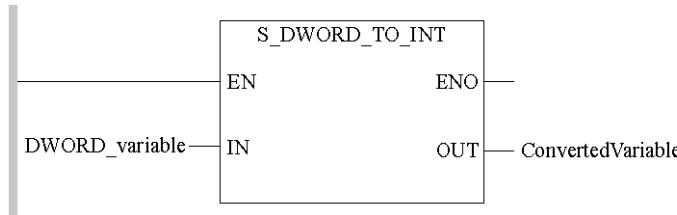
When converting the data type DWORD to the BOOL, BYTE, WORD, INT or UINT data type, the least significant bits of the input value are transferred to the output.

EN and ENO can be configured as additional parameters.


Available Functions

List of available functions

- S_DWORD_TO_BOOL
- S_DWORD_TO_BYTE
- S_DWORD_TO_WORD
- S_DWORD_TO_INT
- S_DWORD_TO_DINT
- S_DWORD_TO_UINT
- S_DWORD_TO_UDINT


Representation in FBD

Representation of an Integer application

Representation in LD

Representation of an Integer application

Parameter Description

Description of input parameters

Parameter	Data Type	Meaning
DWORD_variable	DWORD	input value

Description of output parameters

Parameter	Data Type	Meaning
ConvertedVariable	BOOL, BYTE, WORD, INT, DINT, UINT, UDINT	output value

Runtime Error

The system bit %S18, page 349 and system word %SW17 (see EcoStruxure™ Control Expert, System Bits and Words, Reference Manual) are not used.

S_INT_TO_***: Type Conversion

What's in This Chapter

Description	325
-------------------	-----

Introduction

This chapter describes the S_INT_TO_*** block.

Description

Function Description

The function converts an input value of the INT data type to a BOOL, BYTE, WORD, DWORD, DINT, UINT, or UDINT output value.

NOTE: The function converts strictly in accordance with IEC rules. Since this function has been realized as a generic function, there will also be a few illogical conversions, e.g. INT_TO_BOOL.

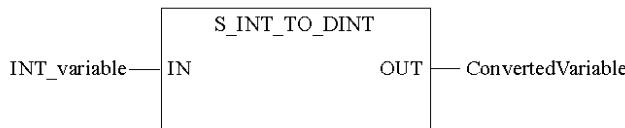
Negative input values cannot be converted into data types UINT or UDINT.

When converting an input value from the data type INT into data type WORD, the bit pattern from the input is transferred to the output without being modified.

When converting an input value of data type INT into the data types BOOL or BYTE, the least significant bits of the input are transferred to the output.

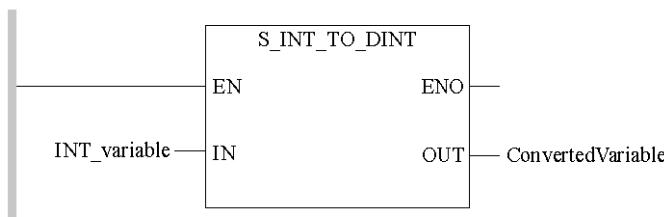
EN and ENO can be configured as additional parameters.

Available Functions


List of available functions

- S_INT_TO_BOOL
- S_INT_TO_BYTE
- S_INT_TO_WORD
- S_INT_TO_DWORD

- S_INT_TO_DINT
- S_INT_TO_UINT
- S_INT_TO_UDINT


Representation in FBD

Representation of a double integer application

Representation in LD

Representation of a double integer application

Parameter Description

Description of input parameters

Parameter	Data Type	Meaning
INT_variable	INT	input value

Description of output parameters

Parameter	Data Type	Meaning
ConvertedVariable	BOOL, BYTE, DWORD, WORD, DINT, UINT, UDINT	output value

Runtime Error

The system bit %S18, page 349 is set to 1, if

- the value range on the output is exceeded (numeric data types)
- a negative input value is to be converted into an UDINT- or UINT output value.

The system bit %S18, page 349 and system word %SW17 (see EcoStruxure™ Control Expert, System Bits and Words, Reference Manual) are **not** used when data types are converted:

- BOOL
- BYTE
- WORD
- DWORD

S_DINT_TO_***: Type Conversion

What's in This Chapter

Description	328
-------------------	-----

Introduction

This chapter describes the S_DINT_TO_*** block.

Description

Function Description

The function converts an input value of the DINT data type to a BOOL, BYTE, WORD, DWORD, INT, UINT, UDINT or REAL output value.

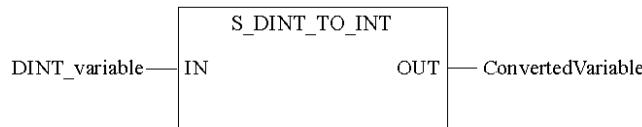
NOTE: The function converts strictly in accordance with IEC rules. Since this function has been realized as a generic function, there will also be a few illogical conversions, e.g. DINT_TO_BOOL.

When converting the data type DINT to the BOOL, BYTE, WORD, INT or UINT data type, the least significant bits of the input value are transferred to the output.

Negative input values cannot be converted into data types UINT or UDINT.

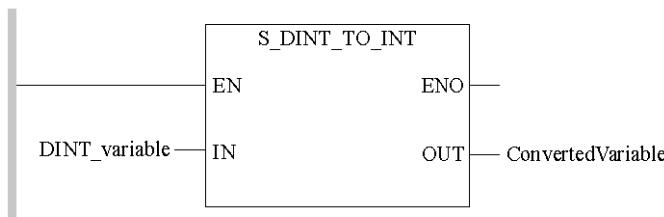
EN and ENO can be configured as additional parameters.

Available Functions


List of available functions

- S_DINT_TO_BOOL
- S_DINT_TO_BYTE
- S_DINT_TO_WORD
- S_DINT_TO_DWORD
- S_DINT_TO_INT
- S_DINT_TO_UINT

- S_DINT_TO_UDINT
- S_DINT_TO_REAL


Representation in FBD

Representation of an Integer application

Representation in LD

Representation of an Integer application

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
DINT_variable	DINT	input value

Description of the output parameter

Parameter	Data Type	Meaning
ConvertedVariable	BOOL, BYTE, WORD, DWORD, INT, UINT, UDINT, REAL	output value

Runtime Error

The system bit %S18, page 349 is set to 1, if

- the value range of the output is exceeded (numeric data type except REAL)
- a negative input value is to be converted into an UDINT- or UINT output value.

The system bit %S18 is not used when data types BOOL, BYTE, WORD and DWORD are converted.

S_REAL_TO_***: Type Conversion

What's in This Chapter

Description	331
-------------------	-----

Introduction

This chapter describes the S_REAL_TO_*** block

Description

Function description

The function converts an input value of the REAL data type to a DINT, UDINT data type.

NOTE: The function converts strictly in accordance with IEC rules. Since this function has been realized as a generic function, there will also be a few illogical conversions.

When converting to DINT and UDINT, the IEC 559 rules for rounding are applied.

EN and ENO can be configured as additional parameters.

Available functions

List of available functions:

- S_REAL_TO_DINT
- S_REAL_TO_UDINT

Example

The following example shows how the IEC 559 rounding is applied.

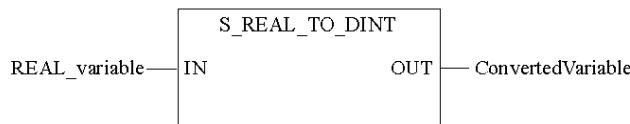
1,4 -> 1

1,5 -> 2

2,5 -> 2

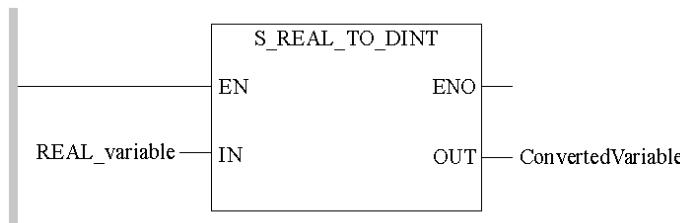
3,5 -> 4

4,5 -> 4


4,6 -> 5

Negative input values

Negative input values cannot be converted into data type , UDINT.


Representation in FBD

Representation of a double integer application:

Representation in LD

Representation of a double integer application:

Parameter description

Description of input parameters:

Parameter	Data type	Meaning
REAL_variable	REAL	Input value

Description of output parameters:

Parameter	Data type	Meaning
Converted-Variable	DINT, UDINT	Output value

Runtime error

The system bit %S18, page 349 is set to 1, if

- an unauthorized floating point number is set at the input
- the value range on the output is exceeded (numeric data types)
- a negative input value is to be converted into an UDINT.
- an unauthorized floating point number is created during the conversion into the REAL data type. In this case, the status is also placed in %SW17 (see EcoStruxure™ Control Expert, System Bits and Words, Reference Manual).

S_TIME_TO_UDINT: Type Conversion

What's in This Chapter

Description	334
-------------------	-----

Introduction

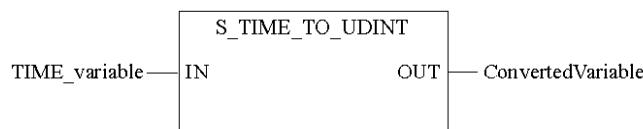
This chapter describes the S_TIME_TO_UDINT block.

Description

Function Description

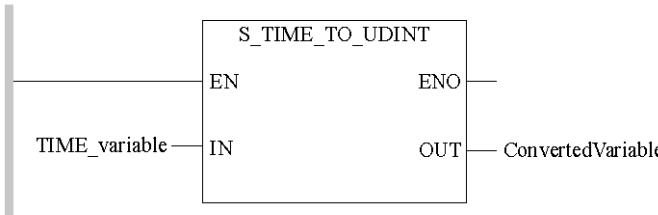
The function converts an input value of the TIME data type to UDINT data type.

EN and ENO can be configured as additional parameters.


Available Function

List of available function

- S_TIME_TO_UDINT


Representation in FBD

Representation of an Unsigned Double Integer application

Representation in LD

Representation of an Unsigned Double Integer application

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
TIME_variable	TIME	input value

Description of the output parameter:

Parameter	Data Type	Meaning
ConvertedVariable	UDINT	output value

S_UDINT_TO_***: Type Conversion

What's in This Chapter

Description	336
-------------------	-----

Introduction

This chapter describes the S_UDINT_TO_*** block.

Description

Function Description

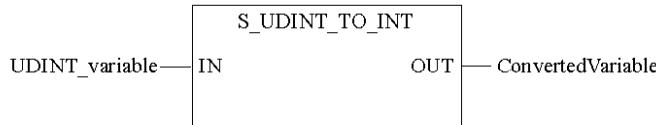
The function converts an input value of the UDINT data type to an output value of the BOOL, BYTE, WORD, DWORD, INT, DINT, UINT,REAL or TIME data type.

NOTE: The function converts strictly in accordance with IEC rules. Since this function has been realized as a generic function, there will also be a few illogical conversions, e.g. UDINT_TO_BOOL.

When converting the data type UDINT to the BOOL, BYTE, WORD, INT or UINT data type, the least significant bits of the input value are transferred to the output.

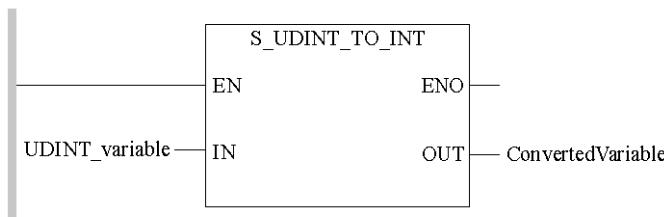
EN and ENO can be configured as additional parameters.

Available Functions


List of available functions

- S_UDINT_TO_BOOL
- S_UDINT_TO_BYTE
- S_UDINT_TO_WORD
- S_UDINT_TO_DWORD
- S_UDINT_TO_INT
- S_UDINT_TO_DINT
- S_UDINT_TO_UINT

- S_UDINT_TO_TIME
- S_UDINT_TO_REAL


Representation in FBD

Representation of an Integer application

Representation in LD

Representation of an Integer application

Parameter Description

Description of input parameters

Parameter	Data Type	Meaning
UDINT_variable	UDINT	input value

Description of output parameters

Parameter	Data Type	Meaning
ConvertedVariable	BOOL, BYTE, WORD, DWORD, INT, DINT, UINT, REAL, TIME	output value

Runtime Error

The system bit %S18, page 349 is set to 1, if

- the value range on the output is exceeded (numeric data types).
- a negative input value is to be converted into an UDINT,UINT or TIME output value.

The system bit %S18, page 349 and system word %SW17 (see EcoStruxure™ Control Expert, System Bits and Words, Reference Manual) are **not** used when data types are converted:

- BOOL
- BYTE
- WORD
- DWORD
- REAL

S_UINT_TO_***: Type Conversion

What's in This Chapter

Description	339
-------------------	-----

Introduction

This chapter describes the S_UINT_TO_*** block.

Description

Function Description

The function converts an input value of the `UINT` data type to an output value of the `BOOL`, `BYTE`, `WORD`, `DWORD`, `INT`, `DINT` or `UDINT` .data type.

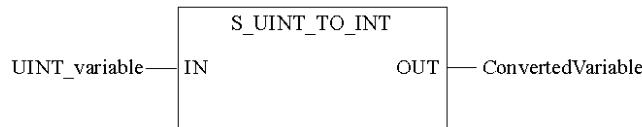
NOTE: The function converts strictly in accordance with IEC rules. Since this function has been realized as a generic function, there will also be a few illogical conversions, e. g. `UINT_TO_BOOL`.

When converting an input value from the data type `UINT` into data type `WORD`, the bit pattern from the input is transferred to the output without being modified.

When converting an input value of data type `UINT` into the data types `BOOL` or `BYTE`, the least significant bits of the input are transferred to the output.

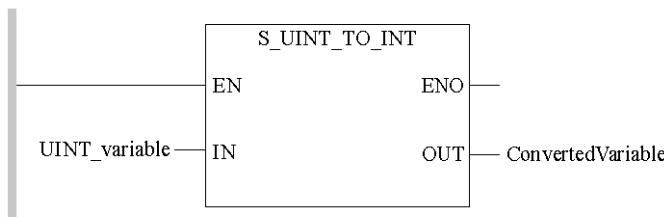
`EN` and `ENO` can be configured as additional parameters.

Available Functions


List of available functions

- `S_UINT_TO_BOOL`
- `S_UINT_TO_BYTE`
- `S_UINT_TO_WORD`
- `S_UINT_TO_DWORD`
- `S_UINT_TO_INT`

- S_UINT_TO_DINT
- S_UINT_TO_UDINT


Representation in FBD

Representation of an Integer application

Representation in LD

Representation of an Integer application

Parameter Description

Description of input parameters

Parameter	Data Type	Meaning
UINT_variable	UINT	input value

Description of output parameters

Parameter	Data Type	Meaning
ConvertedVariable	BOOL, BYTE, WORD, DWORD, INT, DINT, UDINT	output value

Runtime Error

The system bit %S18, page 349 is set to 1, if

- the value range on the output is exceeded (numeric data types)

The system bit %S18, page 349 and system word %SW17 (see EcoStruxure™ Control Expert, System Bits and Words, Reference Manual) are **not** used when data types are converted:

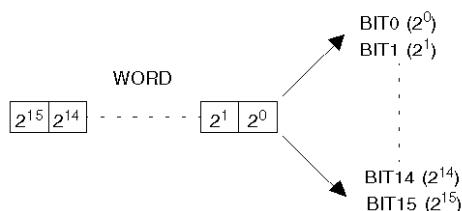
- BOOL
- BYTE
- WORD
- DWORD

S_WORD_TO_BIT: Type Conversion

What's in This Chapter

Description	342
-------------------	-----

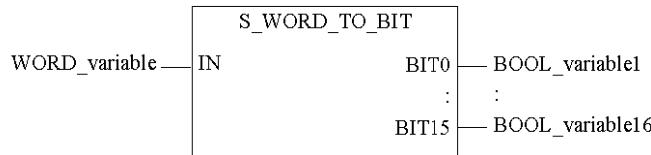
Introduction


This chapter describes the S_WORD_TO_BIT block.

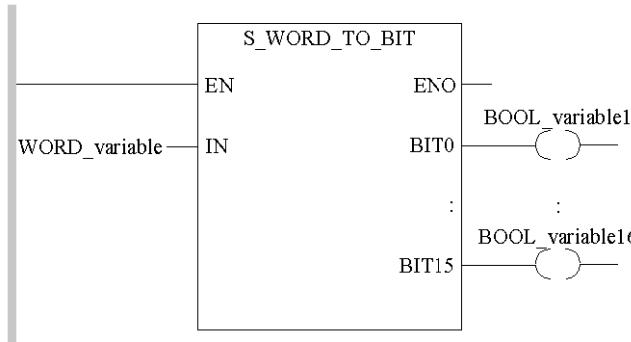
Description

Function Description

The procedure converts an input value of the WORD data type to 16 output values of the BOOL data type.


The individual bits of the word at the input are assigned to the outputs according to the output names.

EN and ENO can be configured as additional parameters.


Representation in FBD

Representation

Representation in LD

Representation

Parameter Description

Description of the input parameters

Parameter	Data Type	Meaning
WORD_variable	WORD	input

Description of the output parameter

Parameter	Data Type	Meaning
BOOL_variable1	BOOL	output BIT0
:	:	:
BOOL_variable16	BOOL	output BIT15

S_WORD_TO_***: Type Conversion

What's in This Chapter

Description	345
-------------------	-----

Introduction

This chapter describes the S_WORD_TO_*** block.

Description

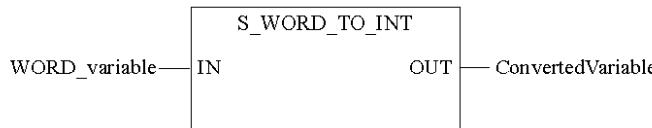
Function Description

The function converts an input value of the WORD data type to a BOOL, BYTE, DWORD, INT, DINT, UINT or UDINT data type.

When converting the WORD data type to the DWORD, DINT or UDINT data type, the bit pattern of the input is transferred to the least significant bits of the output. The most significant bits of the output are set to zero.

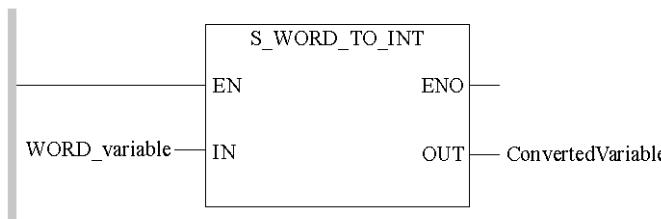
When converting the data type WORD to the data type BOOL or BYTE, the least significant bits of the input value are transferred to the output.

EN and ENO can be configured as additional parameters.


Available Functions

List of available functions

- S_WORD_TO_BOOL
- S_WORD_TO_BYTE
- S_WORD_TO_DWORD
- S_WORD_TO_INT
- S_WORD_TO_DINT
- S_WORD_TO_UINT
- S_WORD_TO_UDINT


Representation in FBD

Representation of an Integer application

Representation in LD

Representation of an Integer application

Parameter Description

Description of input parameters

Parameter	Data Type	Meaning
WORD_variable	WORD	input value

Description of output parameters

Parameter	Data Type	Meaning
ConvertedVariable	BOOL, BYTE, DWORD, INT, DINT, UINT, UDINT	output value

Appendices

What's in This Part

System Objects	348
SRAC References	354

Introduction

This section contains the appendices.

System Objects

What's in This Chapter

M580 Safety System Bits.....	349
M580 Safety System Words.....	351

Introduction

This chapter describes the system bits and words of the M580 Safety PAC.

NOTE: The symbols associated with each bit object or system word mentioned in the descriptive tables of these objects are not implemented as standard in the software, but can be entered using the data editor.

M580 Safety System Bits

System Bits for SAFE Task Execution

The following system bits apply to the M580 safety PAC. For a description of system bits that apply to both the M580 safety PAC and non-safety M580 PACs, refer to the presentation of *System Bits in the EcoStruxure™ Control Expert System Bits and Words Reference Manual*.

These system bits are related to the execution SAFE task, but are not directly accessible in safety program code. They can be accessed only via the `S_SYST_READ_TASK_BIT_MX` and `S_SYST_RESET_TASK_BIT_MX` blocks.

Bit Symbol	Function	Description	Initial State	Type
%S17 CARRY	Rotate shift output	During a rotate shift operation in the SAFE task, this bit takes the state of the outgoing bit.	0	R/W
%S18 OVERFLOW	Overflow or arithmetic error detected	<p>Normally set to 0, this bit is set to 1 in the event of a capacity overflow if there is:</p> <ul style="list-style-type: none"> • A result greater than + 32 767 or less than - 32 768, in single length. • A result greater than + 65 535, in unsigned integer. • A result greater than + 2 147 483 647 or less than - 2 147 483 648, in double length • A result greater than +4 294 967 296, in double length or unsigned integer. • Division by 0. • The root of a negative number. • Forcing to a non-existent step on a drum. • Stacking up of an already full register, emptying of an already empty register. 	0	R/W
%S21 1RSTTASKRUN	First SAFE task scan in RUN	<p>Tested in the SAFE task, this bit indicates the first cycle of this task. It is set to 1 at the start of the cycle and reset to 0 at the end of the cycle.</p> <p>NOTE:</p> <ul style="list-style-type: none"> • The first cycle of the task status can be read using the <code>SCOLD</code> output of the <code>S_SYST_STAT_MX</code> system function block. • This bit is not effective for M580 Safety Hot Standby systems. 	0	R/W

Notes Regarding Non-Safety-Specific System Bits

System Bit	Description	Notes
%S0	cold start	Can be used only in process (non-SAFE) tasks and has no influence on SAFE task.
%S9	outputs set to fallback	Has no influence on Safety output modules.
%S10	Global I/O detected error	Reports some, but not all, of the possible detected errors relating to safety I/O modules.
%S11	watchdog overflow	Takes into account an overrun on SAFE task.
%S16	task I/O detected error	Reports some, but not all, of the possible detected errors relating to safety I/O modules.
%S19	task period overrun	Information for SAFE task overrun is not available.
%S40...47	rack n I/O detected error	Reports some, but not all, of the possible detected errors relating to safety I/O modules.
%S78	STOP on detected error	Applies to both process tasks and the SAFE task. If the bit is set, for example if a %S18 overflow error rises, the SAFE task enters HALT state.
%S94	save adjusted values	Does not apply to SAFE variables. The SAFE initial values are not modifiable by the activation of this bit.
%S117	RIO detected error on Ethernet I/O network	Reports some, but not all, of the possible detected errors relating to safety I/O modules.
%S119	general in rack detected error	Reports some, but not all, of the possible detected errors relating to safety I/O modules.

M580 Safety System Words

System Words for M580 Safety PACs

The following system words apply to the M580 safety PAC. For a description of system words that apply to both the M580 safety PAC and non-safety M580 PACs, refer to the presentation of *System Words* in the *EcoStruxure™ Control Expert System Bits and Words Reference Manual*.

These system words and values are related to the SAFE task. They can be accessed from application program code in the non-safety sections (MAST, FAST, AUX0 or AUX1), but not from code in the SAFE task section.

Word	Function	Type
%SW4	Period of the SAFE task defined in the configuration. The period is not modifiable by the operator.	R
%SW12	Indicates the operating mode of the Copro module: <ul style="list-style-type: none">• 16#A501 = maintenance mode• 16#5AFE = safety mode Any other value is interpreted as a detected error.	R
%SW13	Indicates the operating mode of the CPU: <ul style="list-style-type: none">• 16#501A = maintenance mode• 16#5AFE = safety mode Any other value is interpreted as a detected error.	R
%SW42	SAFE task current time. Indicates the execution time of the last cycle of the SAFE task (in ms).	R
%SW43	SAFE task max time. Indicate the longest task execution time of the SAFE task since the last cold start (in ms).	R
%SW44	SAFE task min time. Indicate the shortest task execution time of the SAFE task since the last cold start (in ms).	R
%SW110	Percentage of system CPU load used by the system for internal services.	R
%SW111	Percentage of system CPU load used by the MAST task.	R
%SW112	Percentage of system CPU load used by the FAST task.	R
%SW113	Percentage of system CPU load used by the SAFE task.	R
%SW114	Percentage of system CPU load used by the AUX0 task.	R
%SW115	Percentage of system CPU load used by the AUX1 task.	R
%SW116	Total system CPU load.	R

Word	Function	Type
%SW124	<p>Contains the cause of the non-recoverable detected error when the M580 Safety PAC is in Halt state:</p> <ul style="list-style-type: none"> • 0x5AF2: RAM detected error in memory check. • 0x5AFB: Safety firmware code error detected. • 0x5AF6: Safety watchdog overrun error detected on CPU. • 0x5AFF: Safety watchdog overrun error detected on coprocessor. • 0x5B01: Coprocessor not detected at start-up. • 0x5AC03: CIP safety non-recoverable error detected by CPU. • 0x5AC04: CIP safety non-recoverable error detected by coprocessor. <p>NOTE: The above does not constitute a complete list. Refer to the <i>EcoStruxure™ Control Expert System Bits and Words Reference Manual</i> for more information.</p>	R
%SW125	<p>Contains the cause of the recoverable detected error in the M580 Safety PAC:</p> <ul style="list-style-type: none"> • 0x5AC0: CIP safety configuration is not correct (detected by CPU). • 0x5AC1: CIP safety configuration is not correct (detected by coprocessor). • 0x5AF3: Comparison error detected by main CPU. • 0x5AFC: Comparison error detected by coprocessor. • 0x5AFD: Internal error detected by coprocessor. • 0x5AFE: Synchronization error detected between CPU and coprocessor. • 0x9690: Application program checksum error detected. <p>NOTE: The above does not constitute a complete list. Refer to the <i>EcoStruxure™ Control Expert System Bits and Words Reference Manual</i> for more information.</p>	R
%SW126	These two system words contain information that is for Schneider Electric internal use to help analyze a detected error in more detail.	R
%SW127		
%SW128	<p>With CPU firmware 3.10 or earlier, force time synchronization between NTP time and Safe time into the safe IO modules and Safe CPU task:</p> <ul style="list-style-type: none"> • Value change from 16#1AE5 to 16#E51A forces synchronization. Refer to the topic <i>Procedure for Synchronizing NTP Time Settings</i> (see Modicon M580, Safety Manual). • Other sequences and values do not force synchronization. 	R/W
%SW142	Contains the safety COPRO firmware version in 4 digits BCD: for example firmware version 21.42 corresponds to %SW142 = 16#2142.	R
%SW148	Count of error correcting code (ECC) errors detected by the CPU.	R
%SW152	<p>Status of the NTP CPU time updated by Ethernet communications module (e.g BMENOC0301/11) over the X Bus backplane via the optional forced time synchronization feature:</p> <ul style="list-style-type: none"> • 0: the CPU time is not refreshed by the Ethernet communications module. • 1: The CPU time is refreshed by the Ethernet communications module. 	R
%SW169	Safety Application ID: Contains an ID of the safety code part of the application. The ID is automatically modified when the safe application code is modified.	R

Word	Function	Type
	<p>NOTE:</p> <ul style="list-style-type: none"> • If the safe code has been changed and a Build Changes command has been executed since the previous Rebuild All command (thereby changing the Safety application ID), execution of a Rebuild All command may again change the Safety application ID. • The SAFE program unique identifier can be read using the SAID output of the S_SYST_STAT_MX system function block. 	
%SW171	<p>State of the FAST tasks:</p> <ul style="list-style-type: none"> • 0: No FAST tasks exist • 1: Stop • 2: Run • 3: Breakpoint • 4: Halt 	R
%SW172	<p>State of the SAFE task:</p> <ul style="list-style-type: none"> • 0: No SAFE task exists • 1: Stop • 2: Run • 3: Breakpoint • 4: Halt 	R
%SW173	<p>State of the MAST task:</p> <ul style="list-style-type: none"> • 0: No MAST task exists • 1: Stop • 2: Run • 3: Breakpoint • 4: Halt 	R
%SW174	<p>State of the AUX0 task:</p> <ul style="list-style-type: none"> • 0: No AUX0 task exists • 1: Stop • 2: Run • 3: Breakpoint • 4: Halt 	R
%SW175	<p>State of the AUX1 task:</p> <ul style="list-style-type: none"> • 0: No AUX1 task exists • 1: Stop • 2: Run • 3: Breakpoint • 4: Halt 	R

SRAC References

The verification plan of the Safety Related Application Conditions (SRAC) provides a generic frame to justify that the instruction of the associated installation and safety manual are fulfilled. These instructions in the *EcoStruxure Control Expert, Safety Block Library* documentation are listed as requirements.

The following table provides the title of the paragraph where you can find the requirement:

Safety Information Message Requirement	
Id	At this place
LIB #1	Product Related Information, page 12
LIB #2	Product Related Information, page 12
LIB #3	S_EDM: Actuator Error Detection Monitoring, Function Description, page 69
LIB #4	S_ENABLE_SWITCH: Three Position Enable Switch, Function Description, page 79
LIB #5	S_ESPE: Electro-Sensitive Protective Equipment, Function Description, page 87
LIB #6	S_GUARD_LOCKING: Guard Lock Control, Function Description, page 95
LIB #7	S_GUARD_MONITORING: Guard Lock Monitoring, Function Description, page 103
LIB #8	S_OUTCONTROL: Output Driver, Function Description, page 121
LIB #9	S_AI_COMP: Analog Input Compare, Function Description, page 130
LIB #10	S_EMERGENCYSTOP: Emergency Stop Monitor, Function Description, page 144
LIB #11	S_MUTING_PAR: Parallel Muting, Muting Description, page 158
LIB #12	S_MUTING_SEQ: Sequential Muting, Muting Description, page 172
LIB #13	S_AIHA: High Availability for Mx80 Safety Analog Inputs, Function Description, page 198
LIB #14	S_DIHA: High Availability for Mx80 Safety Digital Inputs, Function Description, page 202

Glossary

B

BOOL:

BOOL is the abbreviation of boolean type. This is the elementary data item in computing. A BOOL type variable has a value of either: 0 (FALSE) or 1 (TRUE).

A BOOL type word extract bit, for example: %MW10.4.

BYTE:

When 8 bits are put together, this is called a BYTE. A BYTE is either entered in binary, or in base 8.

The BYTE type is coded in an 8 bit format, which, in hexadecimal, ranges from 16#00 to 16#FF

D

DINT:

double integer format (coded on 32 bits).

The lower and upper limits are as follows: -(2 to the power of 31) to (2 to the power of 31) - 1.

Example:

-2147483648, 2147483647, 16#FFFFFF.

DWORD:

double word

The **DWORD** type is coded in 32 bit format.

This table shows the lower/upper limits of the bases which can be used:

Base	Lower Limit	Upper Limit
Hexadecimal	16#0	16#FFFFFF
Octal	8#0	8#3777777777
Binary	2#0	2#111111111111111111111111111111

Representation examples

Data Content	Representation in One of the Bases
000000000000010101011001101110	16#ADCDE
00000000000000010000000000000000	8#200000
0000000000000101010111001101110	2#10101011110011011110

E**EBOOL:**

extended boolean type

A **EBOOL** type variable brings a value 0 (**FALSE**) or 1 (**TRUE**) but also rising or falling edges and forcing capabilities.

An **EBOOL** type variable takes up 1 byte of memory.

The byte split up into

- 1 bit for the value,
- 1 bit for the history bit (each time the state's object changes, the value is copied inside the history bit),
- 1 bit for the forcing bit (equals to 0, if the object isn't forced, equal to 1 if the bit is forced).

The default type value of each bit is 0 (**FALSE**).

EN:

EN means **ENable**, this is an optional block input.

When EN is activated, an ENO output is automatically drafted.

If...	then...
If EN = 0,	<ul style="list-style-type: none"> the block is not activated, its internal program is not executed, and ENO is set to 0.
If EN = 1,	<ul style="list-style-type: none"> the internal program of the block is executed, and ENO is set to 1 by the system. <p>Note: If an error is detected, ENO is set to 0.</p>
If EN is not connected,	it is automatically set to 1.

ENO:

ENO means **ErROr NOTification**, this is the output associated to the optional input EN.

If ENO is set to 0 (caused by EN=0 or in case of a detected execution error),

- the outputs of function blocks remain in the status they were in for the last correct executed scanning cycle, and
- the output(s) of functions and procedures are set to 0.

F**FFB:**

FFB is the abbreviation of **F**unctions and **F**unction **B**lock which is a collective term for EF (elementary function), EFB (elementary function block) and DFB (derived function block)

I**INT:**

single integer format (coded on 16 bits)

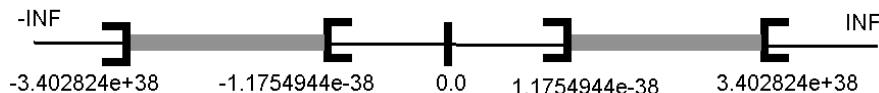
The lower and upper limits are as follows: -(2 to the power of 15) to (2 to the power of 15) - 1.

Example

-32768, 32767, 2#111110001001001, 16#9FA4.

N**NAN:**

Used to indicate that a result of an operation is not a number (NAN = Not A Number).


Example: calculating the square root of a negative number.

NOTE: The IEC 559 standard defines two classes of NAN: quiet NAN (QNAN) and signaling NaN (SNAN). QNAN is a NAN with the most significant fraction bit set and a SNAN is a NAN with the most significant fraction bit clear (Bit number 22). QNANS are allowed to propagate through most arithmetic operations without signaling an exception. SNAN generally signal an invalid-operation exception whenever they appear as operands in arithmetic operations (See %SW17 and %S18).

R**REAL:**

The REAL type is encoded in a 32 bit format.

The possible value ranges are shown in the figure below:

When a result is:

- between $-1,175494e-38$ and $1,175494e-38$, it is considered to be a DEN;
- less than $-3.402824e+38$, the symbol $-\text{INF}$ (for - infinity) is displayed;
- greater than $+3.402824e+38$, the symbol INF (for + infinity) is displayed;
- undefined (square root of a negative number), the symbol NAN is displayed.

NOTE: The IEC 559 standard defines two classes of NAN: the silent NAN (QNAN) and the signaling NAN (SNAN). A QNAN is a NAN with a most significant fraction bit while an SNAN is a NAN without a most significant fraction bit (bit number 22). QNANS can be propagated via most arithmetic operations without throwing an exception. As for SNANS, they generally indicate an invalid operation when they are used as operands in arithmetic operations (see %SW17 and %S18).

NOTE: When a DEN (non-standardized number) is used as an operand, the result is not significant.

S**SRAC:**

(Safety Related Application Condition)

T**TIME:**

The type **TIME** expresses a duration in milliseconds. Coded in 32 bits, this type makes it possible to obtain periods from 0 to $2^{32}-1$ milliseconds.

The units of type **TIME** are the following: the days (d), the hours (h), the minutes (m), the seconds (s) and the milliseconds (ms). A literal value of the type **TIME** is represented by a combination of previous types preceded by **T#**, **t#**, **TIME#** or **time#**.

Examples: **T#25h15m, t#14.7S, TIME#5d10h23m45s3ms**

U**UDINT:**

UDINT is the abbreviation of Unsigned Double Integer format (coded on 32 bits) unsigned. The lower and upper limits are as follows: 0 to (2 to the power of 32) - 1.

Example

0, 4294967295, 2#11111111111111111111111111111111, 8#377777777777,
16#FFFFFF.

UINT:

unsigned integer format (coded on 16 bits)

The lower and upper limits are as follows: 0 to (2 to the power of 16) - 1.

Example

0, 65535, 2#1111111111111111, 8#177777, 16#FFFF.

W**WORD:**

The WORD type is coded in 16 bit format and is used to carry out processing on bit strings.

This table shows the lower/upper limits of the bases which can be used:

Base	Lower Limit	Upper Limit
Hexadecimal	16#0	16#FFFF
Octal	8#0	8#177777
Binary	2#0	2#1111111111111111

Representation examples

Data Content	Representation in One of the Bases
0000000011010011	16#D3
1010101010101010	8#125252
0000000011010011	2#11010011

Index

A

absolute value computation	
S_ABS_***	237
Actuator	69
S_ENABLE_SWITCH	79
S_ESPE	87
S_GUARD_LOCKING	95
S_GUARD_MONITORING	103
S_MODE_SELECTOR	113
S_OUTCONTROL	121
addition	
S_ADD_***	240
AND function	
S_AND_***	208
assignment	
S_MOVE	249

B

binary selection	
S_SEL	275
bistable function block, reset dominant	
S_RS	224
bistable function block, set dominant	
S_SR	232
block types	19

C

Communication	
S_RD_ETH_MX	25
S_RD_ETH_MX2	37
S_WR_ETH_MX	32
S_WR_ETH_MX2	44
Comparison	
S_EQ_***	50
S_GE_***	53
S_GT_***	56
S_LE_***	59
S_LT_***	62
S_NE_***	65
conditional FFB call	23

D

detection of falling edges	
S_F_TRIG	210
detection of rising edges	
S_R_TRIG	216
division	
S_DIV_***	243
down counter	
S_CTD_***	290

E

elementary function	19
elementary function block	19
EN	22
ENO	22
equal to	
S_EQ_***	50
exclusive OR function	
S_XOR_***	234

G

greater than	
S_GT_***	56
greater than or equal to	
S_GE_***	53

H

high availability	
S_AIHA	198
S_DIHA	202

L

less than	
S_LT_***	62
less than or equal to	
S_LE_***	59
limit	
S_LIMIT_***	263
Logic	
S_AND_***	208
S_F_TRIG	210

S_NOT_***	212	OR function	
S_OR_***	214	S_OR_***	214
S_R_TRIG	216		
S_ROL_***	218	P	
S_ROR_***	221		
S_RS	224	pulse	
S_SHL_***	226	S_TP	305
S_SHR_***	229		
S_SR	232	R	
S_XOR_***	234		
M		rotate left	
Mathematics		S_ROL_***	218
S_ABS_***	237	rotate right	
S_ADD_***	240	S_ROR_***	221
S_DIV_***	243		
S_MOVE	249	S	
S_MUL_***	246	S_ABS_***	237
S_NEG_***	251	S_ADD_***	240
S_SIGN_***	256	safety system bits	349
S_SQRT_REAL	254	safety system words	351
S_SUB_***	259	S_AI_COMP	130
maximum value function		S_AIHA	198
S_MAX_***	266	S_AND_***	208
minimum value function		S_ANTIVALENT	137
S_MIN_***	269	S_BIT_TO_BYTE	309
multiplexer		S_BIT_TO_WORD	312
S_MUX_***	272	S_BOOL_TO_***	315
multiplication		S_BYTE_TO_***	320
S_MUL_***	246	S_BYTE_TO_BIT	317
N		S_CTD_***	290
negation		S_CTU_***	293
S_NEG_***	251	S_CTUD_***	296
S_NOT_***	212	S_DIHA	202
not equal to		S_DINT_TO_***	328
S_NE_***	65	S_DIV_***	243
O		S_DWORD_TO_***	322
off delay		S_EDM	69
S_TOF	299	S_EMERGENCYSTOP	144
on delay		S_ENABLE_SWITCH	79
S_TON	302	S_EQ_***	50
		S_EQUIVALENT	152
		S_ESPE	87
		S_F_TRIG	210
		S_GE_***	53
		S_GT_***	56

S_GUARD_LOCKING	95	S_TWO_HAND_CONTROL_TYPE_II	182
S_GUARD_MONITORING	103	S_TWO_HAND_CONTROL_TYPE_III	189
shift left		subtraction	
S_SHL_***	226	S_SUB_***	259
shift right		S_UDINT_TO_***	336
S_SHR_***	229	S_UINT_TO_***	339
sign evaluation		S_WORD_TO_***	345
S_SIGN_***	256	S_WORD_TO_BIT	342
S_INT_TO_***	325	S_WR_ETH_MX	32
S_LE_***	59	S_WR_ETH_MX2	44
S_LIMIT_***	263	S_XOR_***	234
S_LT_***	62	Sensor	
S_MAX_***	266	S_AI_COMP	130
S_MIN_***	269	S_ANTIVALENT	137
S_MODE_SELECTOR	113	S_EMERGENCYSTOP	144
S_MOVE	249	S_EQUIVALENT	152
S_MUL_***	246	S_MUTING_PAR	158
S_MUTING_PAR	158	S_MUTING_SEQ	172
S_MUTING_SEQ	172	S_TWO_HAND_CONTROL_TYPE_II	182
S_MUX_***	272	S_TWO_HAND_CONTROL_TYPE_III	189
S_NE_***	65	Statistics	
S_NEG_***	251	S_LIMIT_***	263
S_NOT_***	212	S_MAX_***	266
S_OR_***	214	S_MIN_***	269
S_OUTCONTROL	121	S_MUX_***	272
S_R_TRIG	216	S_SEL	275
S_RD_ETH_MX	25	system	
S_RD_ETH_MX2	37	bits	349
S_REAL_TO_***	331	words	351
S_ROL_***	218	System	
S_ROR_***	221	S_SYST_CLOCK_MX	278
S_RS	224	S_SYST_READ_TASK_BIT_MX	281
S_SEL	275	S_SYST_RESET_TASK_BIT_MX	283
S_SHL_***	226	S_SYST_STAT_MX	285
S_SHR_***	229	S_SYST_TIME_MX	287
S_SIGN_***	256		
S_SQRT_REAL	254		
S_SR	232		
S_SUB_***	259		
S_SYST_CLOCK_MX	278		
S_SYST_READ_TASK_BIT_MX	281		
S_SYST_RESET_TASK_BIT_MX	283		
S_SYST_STAT_MX	285		
S_SYST_TIME_MX	287		
S_TIME_TO_UDINT	334		
S_TOF	299		
S_TON	302		
S_TP	305		
		type conversion	
		S_BIT_TO_BYTE	309

T

Timer & Counter

S_CTD_***	290
S_CTU_***	293
S_CTUD_***	296
S_TOF	299
S_TON	302
S_TP	305

S_BIT_TO_WORD	312
S_BOOL_TO_***	315
S_BYTE_TO_***	320
S_BYTE_TO_BIT	317
S_DINT_TO_***	328
S_DWORD_TO_***	322
S_INT_TO_***	325
S_REAL_TO_***	331
S_TIME_TO_UDINT	334
S_UDINT_TO_***	336
S_UINT_TO_***	339
S_WORD_TO_***	345
S_WORD_TO_BIT	342

Type to type

S_BIT_TO_BYTE	309
S_BIT_TO_WORD	312
S_BOOL_TO_***	315
S_BYTE_TO_***	320
S_BYTE_TO_BIT	317
S_DINT_TO_***	328
S_DWORD_TO_***	322
S_INT_TO_***	325
S_REAL_TO_***	331
S_TIME_TO_UDINT	334
S_UDINT_TO_***	336
S_UINT_TO_***	339
S_WORD_TO_***	345
S_WORD_TO_BIT	342

U

unconditional FFB call	23
up counter	
S_CTU_***	293
up/down counter	
S_CTUD_***	296

Schneider Electric
35 rue Joseph Monier
92500 Rueil Malmaison
France

+ 33 (0) 1 41 29 70 00

www.se.com

As standards, specifications, and design change from time to time, please ask for confirmation of the information given in this publication.